Tagged_One_250v6_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of bert-base-cased on the tagged_one250v6_wikigold_split dataset. It achieves the following results on the evaluation set:
- Loss: 0.3273
- Precision: 0.5705
- Recall: 0.4716
- F1: 0.5164
- Accuracy: 0.8943
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 74 | 0.4157 | 0.3169 | 0.1621 | 0.2145 | 0.8462 |
No log | 2.0 | 148 | 0.3477 | 0.5106 | 0.3941 | 0.4448 | 0.8842 |
No log | 3.0 | 222 | 0.3273 | 0.5705 | 0.4716 | 0.5164 | 0.8943 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Precision on tagged_one250v6_wikigold_splitself-reported0.571
- Recall on tagged_one250v6_wikigold_splitself-reported0.472
- F1 on tagged_one250v6_wikigold_splitself-reported0.516
- Accuracy on tagged_one250v6_wikigold_splitself-reported0.894