Tagged_Uni_500v3_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of bert-base-cased on the tagged_uni500v3_wikigold_split dataset. It achieves the following results on the evaluation set:
- Loss: 0.2350
- Precision: 0.7144
- Recall: 0.7115
- F1: 0.7130
- Accuracy: 0.9340
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 172 | 0.2361 | 0.6056 | 0.5596 | 0.5817 | 0.9194 |
No log | 2.0 | 344 | 0.2236 | 0.6872 | 0.6922 | 0.6897 | 0.9315 |
0.1011 | 3.0 | 516 | 0.2350 | 0.7144 | 0.7115 | 0.7130 | 0.9340 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Precision on tagged_uni500v3_wikigold_splitself-reported0.714
- Recall on tagged_uni500v3_wikigold_splitself-reported0.712
- F1 on tagged_uni500v3_wikigold_splitself-reported0.713
- Accuracy on tagged_uni500v3_wikigold_splitself-reported0.934