|
# DataLinguistic-70B-4bit-V1.0 Chinese-English Question Answering Model |
|
|
|
## Model Overview |
|
|
|
DataLinguistic-70B-4bit-V1.0 is a Chinese-English question answering model fine-tuned from Huggingface's Llama-2-70b-chat-hf model with 4-bit quantization on DataLinguistic's proprietary datasets. |
|
|
|
## Model Architecture |
|
|
|
DataLinguistic-70B-4bit-V1.0 inherits the encoder-decoder structure from Llama with 70B parameters. On top of that, it is quantized to 4-bit precision before fine-tuning. |
|
|
|
## Training Datasets |
|
|
|
The model was trained on the following open-source datasets: |
|
|
|
- Data_OpenSet: Chinese-English question-answering dataset curated from junelee/wizard_vicuna_70k |
|
- Data_OpenSet2: Chinese-English question-answering dataset curated from garage-bAInd/Open-Platypus |
|
- Proprietary Chinese-English question-answering dataset collected internally by DataLinguistic (not open-sourced) |
|
|
|
The data is formatted as: |
|
|
|
\<s>please answer my question in datalynn model: {question} ANS: {answer}\</s> |
|
|
|
|
|
## Use Cases |
|
|
|
The model can be used for a wide range of Chinese-English question answering and chatbot applications. |
|
|
|
## Model Advantages |
|
|
|
- Based on huge model Llama-70b with 70B parameters |
|
- 4-bit quantization reduces compute |
|
- Fine-tuned on large-scale Chinese-English QA datasets for high quality |
|
|
|
## Usage |
|
|
|
1. Install model from Huggingface |
|
2. Import and initialize model |
|
3. Input question, generate answer |
|
|
|
## Version |
|
|
|
Current version: DataLinguistic-70B-4bit-V1.0 |
|
|
|
## Author |
|
|
|
Tang Zhengzheng |
|
|
|
## Contributors |
|
|
|
DataLinguistic team |
|
|
|
# DataLinguistic-70B-4bit-V1.0 中英文问答模型 |
|
|
|
## 模型简介 |
|
|
|
DataLinguistic-70B-4bit-V1.0是一个基于Huggingface的Llama-2-70b-chat-hf模型进行4bit量化并在DataLinguistic自建数据集上微调的中文英文问答模型。 |
|
|
|
## 模型结构 |
|
|
|
DataLinguistic-70B-4bit-V1.0 inherits the encoder-decoder structure from Llama with 70B parameters. On top of that, it is quantized to 4-bit precision before fine-tuning. |
|
|
|
## 模型训练数据集 |
|
|
|
模型使用了以下开源数据集进行了训练: |
|
|
|
- Data_OpenSet: 基于junelee/wizard_vicuna_70k整理的中英文问答数据集 |
|
- Data_OpenSet2: 基于garage-bAInd/Open-Platypus整理的中英文问答数据集 |
|
- DataLinguistic内部收集的专属中英文问答数据集(未开源) |
|
|
|
数据集采用如下格式: |
|
|
|
\<s>please answer my question in datalynn model: {问题} ANS: {回答}\</s> |
|
|
|
## 应用场景 |
|
|
|
该模型可广泛应用于中英文问答、聊天机器人等场景。 |
|
|
|
## 模型优势 |
|
|
|
- 基于大模型Llama-70b,参数量达70亿 |
|
- 采用4bit量化,降低运算量 |
|
- 在大规模中英文问答数据集上进行微调,质量较高 |
|
|
|
## 使用步骤 |
|
|
|
1. 在Huggingface安装模型 |
|
2. 导入并初始化模型 |
|
3. 输入问题,生成回答 |
|
|
|
## 版本信息 |
|
|
|
当前版本:DataLinguistic-70B-4bit-V1.0 |
|
|
|
## 作者 |
|
|
|
唐正正 |
|
|
|
## 贡献者 |
|
|
|
DataLinguistic团队 |
|
|
|
|
|
|