YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Den4ikAI/ruT5-small-interpreter

Модель для восстановления фразы с помощью контекста диалога (анафора, эллипсисы, гэппинг), проверки орфографии и нормализации текста диалоговых реплик.

Больше о задаче тут.

Пример использования

import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
model_name = 'Den4ikAI/ruT5-small-interpreter'
tokenizer = T5Tokenizer.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained(model_name)
model.eval()
t5_input = '''- Ты собак любишь?
- Не люблю я их  #'''
input_ids = tokenizer(t5_input, return_tensors='pt').input_ids
out_ids = model.generate(input_ids=input_ids, max_length=100, eos_token_id=tokenizer.eos_token_id, early_stopping=True)
t5_output = tokenizer.decode(out_ids[0][1:])
print(t5_output)

Citation

@MISC{Den4ikAI/ruT5-small-interpreter,
    author  = {Denis Petrov, Ilya Koziev},
    title   = {Russian conversations interpreter and normalizer},
    url     = {https://huggingface.co/Den4ikAI/ruT5-small-interpreter},
    year    = 2023
}
Downloads last month
3
Safetensors
Model size
64.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Den4ikAI/ruT5-small-interpreter