from transformers import pipeline, AutoTokenizer | |
# Load model | |
model_name = "DilipKY/my-text-classifier" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
classifier = pipeline("text-classification", model=model_name, tokenizer=tokenizer) | |
# Label mapping (adjust if necessary) | |
label_map = {"LABEL_0": "NEGATIVE", "LABEL_1": "POSITIVE"} | |
# Test with input text | |
sample_text = "I love this movie!" | |
result = classifier(sample_text) | |
# Convert label | |
result[0]['label'] = label_map.get(result[0]['label'], result[0]['label']) | |
# Print the result | |
print("\n🔍 Sentiment Classification Result:") | |
print(result) | |