my-text-classifier / test_model.py
notes73
Updated tokenizer & fixed sentiment labels
8d3f5be
from transformers import pipeline, AutoTokenizer
# Load model
model_name = "DilipKY/my-text-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline("text-classification", model=model_name, tokenizer=tokenizer)
# Label mapping (adjust if necessary)
label_map = {"LABEL_0": "NEGATIVE", "LABEL_1": "POSITIVE"}
# Test with input text
sample_text = "I love this movie!"
result = classifier(sample_text)
# Convert label
result[0]['label'] = label_map.get(result[0]['label'], result[0]['label'])
# Print the result
print("\n🔍 Sentiment Classification Result:")
print(result)