drAbreu's picture
End of training
59a81d1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
  - generated_from_trainer
datasets:
  - source_data
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: SourceData_RolesMulti_v1_0_0_BioLinkBERT_base
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: source_data
          type: source_data
          config: ROLES_MULTI
          split: validation
          args: ROLES_MULTI
        metrics:
          - name: Precision
            type: precision
            value: 0.9540489642184558
          - name: Recall
            type: recall
            value: 0.9651362164221756
          - name: F1
            type: f1
            value: 0.9595605644473908

SourceData_RolesMulti_v1_0_0_BioLinkBERT_base

This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the source_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0071
  • Accuracy Score: 0.9981
  • Precision: 0.9540
  • Recall: 0.9651
  • F1: 0.9596

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adafactor and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Score Precision Recall F1
0.0052 1.0 864 0.0071 0.9981 0.9540 0.9651 0.9596

Framework versions

  • Transformers 4.46.3
  • Pytorch 1.13.1+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3