|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: michiyasunaga/BioLinkBERT-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- source_data |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: SourceData_SmallmolRoles_v1_0_0_BioLinkBERT_base |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: source_data |
|
type: source_data |
|
config: ROLES_SM |
|
split: validation |
|
args: ROLES_SM |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9716285227917534 |
|
- name: Recall |
|
type: recall |
|
value: 0.9729166666666667 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9722721680704078 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SourceData_SmallmolRoles_v1_0_0_BioLinkBERT_base |
|
|
|
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0016 |
|
- Accuracy Score: 0.9996 |
|
- Precision: 0.9716 |
|
- Recall: 0.9729 |
|
- F1: 0.9723 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use adafactor and the args are: |
|
No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| |
|
| 0.0011 | 1.0 | 864 | 0.0016 | 0.9996 | 0.9716 | 0.9729 | 0.9723 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|