distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0287
  • Accuracy: {'accuracy': 0.992}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3979 1.0 1250 0.2949 {'accuracy': 0.903}
0.4384 2.0 2500 0.2595 {'accuracy': 0.9152}
0.3827 3.0 3750 0.2294 {'accuracy': 0.9316}
0.3539 4.0 5000 0.2089 {'accuracy': 0.9394}
0.331 5.0 6250 0.1202 {'accuracy': 0.9594}
0.2554 6.0 7500 0.1205 {'accuracy': 0.9678}
0.2312 7.0 8750 0.0965 {'accuracy': 0.9778}
0.1933 8.0 10000 0.0551 {'accuracy': 0.9864}
0.1389 9.0 11250 0.0404 {'accuracy': 0.989}
0.0822 10.0 12500 0.0287 {'accuracy': 0.992}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for EshAhm/distilbert-base-uncased-lora-text-classification

Adapter
(315)
this model