|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import json, os, numpy as np |
|
|
|
|
|
|
|
|
class ChunkTokenizer: |
|
|
def __init__(self): |
|
|
self.chunk_to_idx = {} |
|
|
self.idx_to_chunk = {} |
|
|
self.vocab_size = 0 |
|
|
|
|
|
def load(self, path): |
|
|
with open(path, 'r') as f: |
|
|
vocab_data = json.load(f) |
|
|
self.chunk_to_idx = vocab_data['chunk_to_idx'] |
|
|
self.idx_to_chunk = {int(k): v for k, v in vocab_data['idx_to_chunk'].items()} |
|
|
self.vocab_size = vocab_data['vocab_size'] |
|
|
print(f"Loaded tokenizer ({self.vocab_size} tokens)") |
|
|
|
|
|
def encode(self, text): |
|
|
text = text.lower() |
|
|
pos, indices = 0, [] |
|
|
while pos < len(text): |
|
|
for size in (3, 2, 1): |
|
|
chunk = text[pos:pos+size] |
|
|
if chunk in self.chunk_to_idx: |
|
|
indices.append(self.chunk_to_idx[chunk]) |
|
|
pos += size |
|
|
break |
|
|
else: |
|
|
pos += 1 |
|
|
return indices |
|
|
|
|
|
def decode(self, indices): |
|
|
return ''.join([self.idx_to_chunk.get(int(i), '') for i in indices]) |
|
|
|
|
|
|
|
|
|
|
|
class LoRPtLinear(nn.Module): |
|
|
def __init__(self, in_features, out_features, rank=64): |
|
|
super().__init__() |
|
|
self.lora_A = nn.Parameter(torch.randn(out_features, rank) * 0.02) |
|
|
self.lora_B = nn.Parameter(torch.randn(rank, in_features) * 0.02) |
|
|
self.bias = nn.Parameter(torch.zeros(out_features)) |
|
|
|
|
|
def forward(self, x): |
|
|
return F.linear(x, self.lora_A @ self.lora_B, self.bias) |
|
|
|
|
|
|
|
|
class RWKVMambaHybrid(nn.Module): |
|
|
def __init__(self, d_model, d_state=32): |
|
|
super().__init__() |
|
|
self.d_model = d_model |
|
|
self.d_state = d_state |
|
|
self.w_mix = nn.Parameter(torch.ones(d_model) * 0.5) |
|
|
self.A = nn.Parameter(torch.randn(d_state, d_state) * 0.01) |
|
|
self.B = nn.Parameter(torch.randn(d_state, d_model) * 0.01) |
|
|
self.C = nn.Parameter(torch.randn(d_model, d_state) * 0.01) |
|
|
self.D = nn.Parameter(torch.ones(d_model) * 0.1) |
|
|
|
|
|
def forward(self, x): |
|
|
B, T, C = x.shape |
|
|
h = torch.zeros(B, C, device=x.device) |
|
|
s = torch.zeros(B, self.d_state, device=x.device) |
|
|
outputs = [] |
|
|
for t in range(T): |
|
|
x_t = x[:, t, :] |
|
|
h = self.w_mix * h + (1 - self.w_mix) * x_t |
|
|
s = s @ self.A.T + x_t @ self.B.T |
|
|
y_t = s @ self.C.T + h * self.D |
|
|
outputs.append(y_t) |
|
|
return torch.stack(outputs, dim=1) |
|
|
|
|
|
|
|
|
class KQVAttention(nn.Module): |
|
|
def __init__(self, d_model, n_heads=16, rank=64): |
|
|
super().__init__() |
|
|
self.d_model = d_model |
|
|
self.n_heads = n_heads |
|
|
self.head_dim = d_model // n_heads |
|
|
self.q_down = nn.Linear(d_model, rank) |
|
|
self.q_up = nn.Linear(rank, d_model) |
|
|
self.k_down = nn.Linear(d_model, rank) |
|
|
self.k_up = nn.Linear(rank, d_model) |
|
|
self.v_down = nn.Linear(d_model, rank) |
|
|
self.v_up = nn.Linear(rank, d_model) |
|
|
self.out_proj = nn.Linear(d_model, d_model) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
B, T, C = x.shape |
|
|
q = self.q_up(self.q_down(x)) |
|
|
k = self.k_up(self.k_down(x)) |
|
|
v = self.v_up(self.v_down(x)) |
|
|
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim) |
|
|
if mask is not None: |
|
|
attn = attn.masked_fill(mask == 0, float('-inf')) |
|
|
attn = F.softmax(attn, dim=-1) |
|
|
out = attn @ v |
|
|
out = out.transpose(1, 2).contiguous().view(B, T, C) |
|
|
return self.out_proj(out) |
|
|
|
|
|
|
|
|
class i3Block(nn.Module): |
|
|
def __init__(self, d_model, n_heads=16, d_state=32, rank=64, ffn_mult=4): |
|
|
super().__init__() |
|
|
self.hybrid = RWKVMambaHybrid(d_model, d_state) |
|
|
self.ln1 = nn.LayerNorm(d_model) |
|
|
self.attn = KQVAttention(d_model, n_heads, rank) |
|
|
self.ln2 = nn.LayerNorm(d_model) |
|
|
d_ff = d_model * ffn_mult |
|
|
self.ffn = nn.Sequential( |
|
|
LoRPtLinear(d_model, d_ff, rank), |
|
|
nn.GELU(), |
|
|
LoRPtLinear(d_ff, d_model, rank) |
|
|
) |
|
|
self.ln3 = nn.LayerNorm(d_model) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
x = x + self.hybrid(self.ln1(x)) |
|
|
x = x + self.attn(self.ln2(x), mask) |
|
|
x = x + self.ffn(self.ln3(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class i3Model(nn.Module): |
|
|
def __init__(self, vocab_size, d_model=512, n_layers=24, n_heads=16, |
|
|
max_seq_len=256, rank=64, d_state=32): |
|
|
super().__init__() |
|
|
self.vocab_size = vocab_size |
|
|
self.d_model = d_model |
|
|
self.max_seq_len = max_seq_len |
|
|
self.embed = nn.Embedding(vocab_size, d_model) |
|
|
self.pos_embed = nn.Embedding(max_seq_len, d_model) |
|
|
self.layers = nn.ModuleList([ |
|
|
i3Block(d_model, n_heads, d_state, rank) |
|
|
for _ in range(n_layers) |
|
|
]) |
|
|
self.ln_f = nn.LayerNorm(d_model) |
|
|
self.head = LoRPtLinear(d_model, vocab_size, rank) |
|
|
|
|
|
def forward(self, idx): |
|
|
B, T = idx.shape |
|
|
pos = torch.arange(0, T, device=idx.device).unsqueeze(0) |
|
|
x = self.embed(idx) + self.pos_embed(pos) |
|
|
mask = torch.tril(torch.ones(T, T, device=idx.device)).view(1, 1, T, T) |
|
|
for layer in self.layers: |
|
|
x = layer(x, mask) |
|
|
x = self.ln_f(x) |
|
|
return self.head(x) |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate(self, idx, max_new_tokens=100, temperature=0.8, top_k=40): |
|
|
for _ in range(max_new_tokens): |
|
|
idx_cond = idx[:, -self.max_seq_len:] |
|
|
logits = self(idx_cond)[:, -1, :] / temperature |
|
|
v, _ = torch.topk(logits, top_k) |
|
|
logits[logits < v[:, [-1]]] = -float("inf") |
|
|
probs = F.softmax(logits, dim=-1) |
|
|
idx_next = torch.multinomial(probs, 1) |
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
return idx |
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
tokenizer = ChunkTokenizer() |
|
|
tokenizer.load("tokenizer.json") |
|
|
|
|
|
model = i3Model( |
|
|
vocab_size=tokenizer.vocab_size, |
|
|
d_model=512, |
|
|
n_layers=24, |
|
|
n_heads=16, |
|
|
max_seq_len=256, |
|
|
rank=64, |
|
|
d_state=32 |
|
|
).to(device) |
|
|
|
|
|
state_dict = torch.load("pytorch_model.bin", map_location=device) |
|
|
model.load_state_dict(state_dict) |
|
|
model.eval() |
|
|
print("✓ Model loaded successfully") |
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def infer(prompt, max_new_tokens=100, temperature=0.8, top_k=40): |
|
|
input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long).to(device) |
|
|
output = model.generate(input_ids, max_new_tokens=max_new_tokens, |
|
|
temperature=temperature, top_k=top_k) |
|
|
return tokenizer.decode(output[0].cpu().numpy()) |
|
|
|
|
|
|
|
|
def chat_loop(): |
|
|
print("=== i3 Interactive Chat ([INST] format) ===") |
|
|
history = "" |
|
|
while True: |
|
|
user_input = input("[You] ") |
|
|
if user_input.strip().lower() in {"quit", "exit"}: |
|
|
break |
|
|
prompt = f"{history}[INST] {user_input.strip()} [/INST]" |
|
|
reply = infer(prompt, max_new_tokens=120) |
|
|
reply_clean = reply.replace(prompt.lower(), "").strip() |
|
|
print("[i3]:", reply_clean) |
|
|
history += f"[INST] {user_input.strip()} [/INST] {reply_clean} " |
|
|
|
|
|
|
|
|
|
|
|
print("\nExample:") |
|
|
prompt = "[INST] What can we do to make people happier [/INST]" |
|
|
print("Prompt:", prompt) |
|
|
print("Generated:", infer(prompt)) |
|
|
|
|
|
|
|
|
|
|
|
|