i3-22m / user.py
FlameF0X's picture
Create user.py
b7599e3 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import json, os, numpy as np
# ============================================================================
class ChunkTokenizer:
def __init__(self):
self.chunk_to_idx = {}
self.idx_to_chunk = {}
self.vocab_size = 0
def load(self, path):
with open(path, 'r') as f:
vocab_data = json.load(f)
self.chunk_to_idx = vocab_data['chunk_to_idx']
self.idx_to_chunk = {int(k): v for k, v in vocab_data['idx_to_chunk'].items()}
self.vocab_size = vocab_data['vocab_size']
print(f"Loaded tokenizer ({self.vocab_size} tokens)")
def encode(self, text):
text = text.lower()
pos, indices = 0, []
while pos < len(text):
for size in (3, 2, 1):
chunk = text[pos:pos+size]
if chunk in self.chunk_to_idx:
indices.append(self.chunk_to_idx[chunk])
pos += size
break
else:
pos += 1
return indices
def decode(self, indices):
return ''.join([self.idx_to_chunk.get(int(i), '') for i in indices])
# ============================================================================
class LoRPtLinear(nn.Module):
def __init__(self, in_features, out_features, rank=64):
super().__init__()
self.lora_A = nn.Parameter(torch.randn(out_features, rank) * 0.02)
self.lora_B = nn.Parameter(torch.randn(rank, in_features) * 0.02)
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x):
return F.linear(x, self.lora_A @ self.lora_B, self.bias)
class RWKVMambaHybrid(nn.Module):
def __init__(self, d_model, d_state=32):
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.w_mix = nn.Parameter(torch.ones(d_model) * 0.5)
self.A = nn.Parameter(torch.randn(d_state, d_state) * 0.01)
self.B = nn.Parameter(torch.randn(d_state, d_model) * 0.01)
self.C = nn.Parameter(torch.randn(d_model, d_state) * 0.01)
self.D = nn.Parameter(torch.ones(d_model) * 0.1)
def forward(self, x):
B, T, C = x.shape
h = torch.zeros(B, C, device=x.device)
s = torch.zeros(B, self.d_state, device=x.device)
outputs = []
for t in range(T):
x_t = x[:, t, :]
h = self.w_mix * h + (1 - self.w_mix) * x_t
s = s @ self.A.T + x_t @ self.B.T
y_t = s @ self.C.T + h * self.D
outputs.append(y_t)
return torch.stack(outputs, dim=1)
class KQVAttention(nn.Module):
def __init__(self, d_model, n_heads=16, rank=64):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_down = nn.Linear(d_model, rank)
self.q_up = nn.Linear(rank, d_model)
self.k_down = nn.Linear(d_model, rank)
self.k_up = nn.Linear(rank, d_model)
self.v_down = nn.Linear(d_model, rank)
self.v_up = nn.Linear(rank, d_model)
self.out_proj = nn.Linear(d_model, d_model)
def forward(self, x, mask=None):
B, T, C = x.shape
q = self.q_up(self.q_down(x))
k = self.k_up(self.k_down(x))
v = self.v_up(self.v_down(x))
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim)
if mask is not None:
attn = attn.masked_fill(mask == 0, float('-inf'))
attn = F.softmax(attn, dim=-1)
out = attn @ v
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.out_proj(out)
class i3Block(nn.Module):
def __init__(self, d_model, n_heads=16, d_state=32, rank=64, ffn_mult=4):
super().__init__()
self.hybrid = RWKVMambaHybrid(d_model, d_state)
self.ln1 = nn.LayerNorm(d_model)
self.attn = KQVAttention(d_model, n_heads, rank)
self.ln2 = nn.LayerNorm(d_model)
d_ff = d_model * ffn_mult
self.ffn = nn.Sequential(
LoRPtLinear(d_model, d_ff, rank),
nn.GELU(),
LoRPtLinear(d_ff, d_model, rank)
)
self.ln3 = nn.LayerNorm(d_model)
def forward(self, x, mask=None):
x = x + self.hybrid(self.ln1(x))
x = x + self.attn(self.ln2(x), mask)
x = x + self.ffn(self.ln3(x))
return x
class i3Model(nn.Module):
def __init__(self, vocab_size, d_model=512, n_layers=24, n_heads=16,
max_seq_len=256, rank=64, d_state=32):
super().__init__()
self.vocab_size = vocab_size
self.d_model = d_model
self.max_seq_len = max_seq_len
self.embed = nn.Embedding(vocab_size, d_model)
self.pos_embed = nn.Embedding(max_seq_len, d_model)
self.layers = nn.ModuleList([
i3Block(d_model, n_heads, d_state, rank)
for _ in range(n_layers)
])
self.ln_f = nn.LayerNorm(d_model)
self.head = LoRPtLinear(d_model, vocab_size, rank)
def forward(self, idx):
B, T = idx.shape
pos = torch.arange(0, T, device=idx.device).unsqueeze(0)
x = self.embed(idx) + self.pos_embed(pos)
mask = torch.tril(torch.ones(T, T, device=idx.device)).view(1, 1, T, T)
for layer in self.layers:
x = layer(x, mask)
x = self.ln_f(x)
return self.head(x)
@torch.no_grad()
def generate(self, idx, max_new_tokens=100, temperature=0.8, top_k=40):
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.max_seq_len:]
logits = self(idx_cond)[:, -1, :] / temperature
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float("inf")
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, 1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# ============================================================================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = ChunkTokenizer()
tokenizer.load("tokenizer.json")
model = i3Model(
vocab_size=tokenizer.vocab_size,
d_model=512,
n_layers=24,
n_heads=16,
max_seq_len=256,
rank=64,
d_state=32
).to(device)
state_dict = torch.load("pytorch_model.bin", map_location=device)
model.load_state_dict(state_dict)
model.eval()
print("✓ Model loaded successfully")
# ============================================================================
@torch.no_grad()
def infer(prompt, max_new_tokens=100, temperature=0.8, top_k=40):
input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long).to(device)
output = model.generate(input_ids, max_new_tokens=max_new_tokens,
temperature=temperature, top_k=top_k)
return tokenizer.decode(output[0].cpu().numpy())
def chat_loop():
print("=== i3 Interactive Chat ([INST] format) ===")
history = ""
while True:
user_input = input("[You] ")
if user_input.strip().lower() in {"quit", "exit"}:
break
prompt = f"{history}[INST] {user_input.strip()} [/INST]"
reply = infer(prompt, max_new_tokens=120)
reply_clean = reply.replace(prompt.lower(), "").strip()
print("[i3]:", reply_clean)
history += f"[INST] {user_input.strip()} [/INST] {reply_clean} "
# ============================================================================
print("\nExample:")
prompt = "[INST] What can we do to make people happier [/INST]"
print("Prompt:", prompt)
print("Generated:", infer(prompt))
# Optionally start a chat loop:
# chat_loop()