|
---
|
|
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
|
|
tags:
|
|
- efficientnetv2_m
|
|
- BigEarthNet v2.0
|
|
- Remote Sensing
|
|
- Classification
|
|
- image-classification
|
|
- Multispectral
|
|
library_name: configilm
|
|
license: mit
|
|
widget:
|
|
- src: example.png
|
|
example_title: Example
|
|
output:
|
|
- label: Agro-forestry areas
|
|
score: 0.000000
|
|
- label: Arable land
|
|
score: 0.000000
|
|
- label: Beaches, dunes, sands
|
|
score: 0.000000
|
|
- label: Broad-leaved forest
|
|
score: 0.000000
|
|
- label: Coastal wetlands
|
|
score: 0.000000
|
|
---
|
|
|
|
[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
|
|
:---:|:---:|:---:|:---:|:---:
|
|
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
|
|
|
|
# Efficientnetv2_m pretrained on BigEarthNet v2.0 using Sentinel-2 bands
|
|
|
|
<!-- Optional images -->
|
|
<!--
|
|
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
|
|
:---:|:---:
|
|
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
|
|
-->
|
|
|
|
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-2 bands.
|
|
It was trained using the following parameters:
|
|
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average
|
|
precision macro)
|
|
- Batch size: 512
|
|
- Learning rate: 0.001
|
|
- Dropout rate: 0.15
|
|
- Drop Path rate: 0.15
|
|
- Learning rate scheduler: LinearWarmupCosineAnnealing for 2000 warmup steps
|
|
- Optimizer: AdamW
|
|
- Seed: 42
|
|
|
|
The weights published in this model card were obtained after 32 training epochs.
|
|
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.
|
|
|
|
](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
|
|
|
|
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
|
|
|
|
| Metric | Macro | Micro |
|
|
|:------------------|------------------:|------------------:|
|
|
| Average Precision | 0.676558 | 0.753525 |
|
|
| F1 Score | 0.599082 | 0.661381 |
|
|
| Precision | 0.711385 | 0.734382 |
|
|
|
|
# Example
|
|
| A Sentinel-2 image (true color representation) |
|
|
|:---------------------------------------------------:|
|
|
| ](example.png) |
|
|
|
|
| Class labels | Predicted scores |
|
|
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
|
|
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 0.000000 <br> 0.000000 <br> ... <br> 0.000000 </p> |
|
|
|
|
|
|
To use the model, download the codes that define the model architecture from the
|
|
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
|
|
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.
|
|
|
|
```python
|
|
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
|
|
|
model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
|
|
```
|
|
|
|
e.g.
|
|
|
|
```python
|
|
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
|
|
|
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
|
|
"BIFOLD-BigEarthNetv2-0/efficientnetv2_m-s2-v0.1.1")
|
|
```
|
|
|
|
If you use this model in your research or the provided code, please cite the following papers:
|
|
```bibtex
|
|
@article{clasen2024refinedbigearthnet,
|
|
title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis},
|
|
author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker},
|
|
year={2024},
|
|
eprint={2407.03653},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV},
|
|
url={https://arxiv.org/abs/2407.03653},
|
|
}
|
|
```
|
|
```bibtex
|
|
@article{hackel2024configilm,
|
|
title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
|
|
author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
|
|
journal={SoftwareX},
|
|
volume={26},
|
|
pages={101731},
|
|
year={2024},
|
|
publisher={Elsevier}
|
|
}
|
|
```
|
|
|