eridu / checkpoint-2079 /README.md
rjurney's picture
Latest training run, just 4 epochs, optimizations all pulled except for FP16, save and eval at epochs to avoid over-fitting
e659e59 unverified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2130621
  - loss:ContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: Kim Chol-sam
    sentences:
      - Stankevich Sergey Nikolayevich
      - Kim Chin-So’k
      - Julen Lopetegui Agote
  - source_sentence: دينا بنت عبد الحميد
    sentences:
      - Alexia van Amsberg
      - Anthony Nicholas Colin Maitland Biddulph, 5th Baron Biddulph
      - Dina bint Abdul-Hamíd
  - source_sentence: Մուհամեդ բեն Նաիֆ Ալ Սաուդ
    sentences:
      - Karpov Anatoly Evgenyevich
      - GNPower Mariveles Coal Plant [former]
      - Muhammed bin Nayef bin Abdul Aziz Al Saud
  - source_sentence: Edward Gnehm
    sentences:
      - Шауэрте, Хартмут
      - Ханзада Филипп, Эдинбург герцогі
      - AFX
  - source_sentence: Schori i Lidingö
    sentences:
      - Yordan Canev
      - ကားပေါ့ အန်နာတိုလီ
      - BYSTROV, Mikhail Ivanovich
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: >-
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: sentence transformers paraphrase multilingual MiniLM L12 v2
          type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
        metrics:
          - type: cosine_accuracy
            value: 0.9879171547865789
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7181636691093445
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9815604299892273
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7181636691093445
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9775832353646149
            name: Cosine Precision
          - type: cosine_recall
            value: 0.98557011840788
            name: Cosine Recall
          - type: cosine_ap
            value: 0.996840725826042
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9725931427811844
            name: Cosine Mcc

sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Schori i Lidingö',
    'Yordan Canev',
    'ကားပေါ့ အန်နာတိုလီ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9879
cosine_accuracy_threshold 0.7182
cosine_f1 0.9816
cosine_f1_threshold 0.7182
cosine_precision 0.9776
cosine_recall 0.9856
cosine_ap 0.9968
cosine_mcc 0.9726

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,130,621 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 9.32 tokens
    • max: 57 tokens
    • min: 3 tokens
    • mean: 9.16 tokens
    • max: 54 tokens
    • min: 0.0
    • mean: 0.34
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    캐스린 설리번 Kathryn D. Sullivanová 1.0
    ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ Aleksander Lubocki 0.0
    Пырванов, Георги アナトーリー・セルジュコフ 0.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 2,663,276 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 9.34 tokens
    • max: 102 tokens
    • min: 4 tokens
    • mean: 9.11 tokens
    • max: 100 tokens
    • min: 0.0
    • mean: 0.33
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    Ева Херман I Xuan Karlos 0.0
    Кличков Андрій Євгенович Андрэй Яўгенавіч Клычкоў 1.0
    Кинах А. Senator John Hickenlooper 0.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 768
  • per_device_eval_batch_size: 768
  • gradient_accumulation_steps: 4
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adafactor

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 768
  • per_device_eval_batch_size: 768
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adafactor
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap
-1 -1 - - 0.7140
0.7207 500 0.038 - -
0.9989 693 - 0.0028 0.9911
1.4425 1000 0.0128 - -
1.9989 1386 - 0.0021 0.9956
2.1643 1500 0.0084 - -
2.8850 2000 0.0065 - -
2.9989 2079 - 0.0015 0.9968

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}