File size: 7,581 Bytes
05fca38 b557b89 05fca38 b557b89 05fca38 b557b89 05fca38 68f009d 05fca38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
language:
- en
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B
tags:
- code-generation
- manim
- python
- animation
- mathematics
- unsloth
- qlora
- text-generation-inference
- transformers
- peft
- lora
datasets:
- dalle2/3blue1brown-manim
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-Coder-7B-manim
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: 3blue1brown-manim
type: dalle2/3blue1brown-manim
metrics:
- type: loss
value: 0.553
name: Final Training Loss
widget:
- text: "Generate Manim code for the following task: Create a blue circle"
example_title: "Simple Shape"
- text: "Generate Manim code for the following task: Draw a sine wave animation"
example_title: "Mathematical Function"
- text: "Generate Manim code for the following task: Show the Pythagorean theorem"
example_title: "Mathematical Formula"
inference:
parameters:
temperature: 0.3
top_p: 0.9
max_new_tokens: 512
---
---
# Qwen2.5-Coder-7B-Manim
[](https://huggingface.co/Harish102005/Qwen2.5-Coder-7B-manim)
[](https://huggingface.co/Qwen/Qwen2.5-Coder-7B)
**Generate Manim (Mathematical Animation Engine) Python code from natural language descriptions!**
Fine-tuned on **2,407 examples** from the 3Blue1Brown Manim dataset using **QLoRA** with Unsloth.
---
## π Quick Start
### Installation
```bash
pip install unsloth transformers accelerate
```
### Load Model
```python
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="Harish102005/Qwen2.5-Coder-7B-manim",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model)
```
### Generate Manim Code
```python
# Alpaca-style prompt template
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
prompt = "Create a blue circle that grows to twice its size"
inputs = tokenizer([
alpaca_prompt.format(
"Generate Manim code for the following task:",
prompt,
""
)
], return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
)
generated_code = tokenizer.decode(outputs, skip_special_tokens=True)
print(generated_code.split("### Response:")[-1].strip())
```
---
### Helper Function
```python
def generate_manim_code(prompt, max_tokens=512):
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
formatted_prompt = alpaca_prompt.format(
"Generate Manim code for the following task:",
prompt,
""
)
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
)
generated_text = tokenizer.decode(outputs, skip_special_tokens=True)
if "### Response:" in generated_text:
code = generated_text.split("### Response:")[-1].strip()
if "### Instruction:" in code:
code = code.split("### Instruction:")[0].strip()
return code
return generated_text
# Example
code = generate_manim_code("Create a rotating square")
print(code)
```
---
## π Example Outputs
### 1. Color-Changing Rotation
**Prompt:** `"Create a rotating square that changes color from blue to red"`
```python
from manim import *
class MyScene(Scene):
def construct(self):
square = Square(color=BLUE)
self.add(square)
self.play(square.animate.rotate(PI), run_time=2)
square.set_color(RED)
```
### 2. Mathematical Function
**Prompt:** `"Draw a sine wave from 0 to 2Ο with animation"`
```python
from manim import *
class MyScene(Scene):
def construct(self):
axes = Axes(x_range=[0, 2*PI], y_range=[-1, 1])
graph = axes.plot(lambda x: np.sin(x), color=BLUE)
self.add(axes, graph)
```
### 3. Formula Display
**Prompt:** `"Show the equation E=mcΒ² and fade it in"`
```python
from manim import *
class MyScene(Scene):
def construct(self):
e_mc_squared = MathTex("E=mc^2")
self.play(Write(e_mc_squared))
self.wait()
```
---
## π Model Details
* **Base Model:** [Qwen/Qwen2.5-Coder-7B](https://huggingface.co/Qwen/Qwen2.5-Coder-7B)
* **Fine-tuning Method:** QLoRA (4-bit) with [Unsloth](https://github.com/unslothai/unsloth)
* **Dataset:** [dalle2/3blue1brown-manim](https://huggingface.co/datasets/dalle2/3blue1brown-manim)
* **Dataset Size:** 2,407 prompt-code pairs
* **Final Training Loss:** 0.553
* **Model Type:** Qwen2ForCausalLM
* **Parameters:** ~7.6B (base), Trainable: 40.4M (0.53%)
### Hyperparameters
| Parameter | Value |
| ------------------- | ------------------------------------------------------------- |
| LoRA Rank (r) | 16 |
| LoRA Alpha | 16 |
| LoRA Dropout | 0.0 |
| Target Modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
| Max Sequence Length | 2048 |
| Precision | BFloat16 |
| Quantization | 4-bit NF4 (double quantization) |
---
## π― Use Cases
* Generate educational animations (math tutorials, visualizations)
* Rapid prototyping of visual content in Manim
* Learning Manim syntax and animation techniques
* Content automation (batch animation generation)
---
## β οΈ Limitations
* Primarily for **2D Manim animations**; may struggle with complex 3D scenes
* Training data limited to **3Blue1Brown patterns** (2,407 examples)
* Minor manual corrections may be needed for complex animations
* Advanced Manim features (custom shaders, complex mobjects) not fully supported
---
## π§ Advanced Usage
### Streaming Output
```python
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=512, temperature=0.3)
```
### Batch Generation
```python
prompts = ["Create a blue circle", "Draw a red square", "Show a green triangle"]
for prompt in prompts:
code = generate_manim_code(prompt)
print(f"Prompt: {prompt}\n{code}\n{'-'*60}")
```
---
## π Acknowledgments
* **Base Model:** [Qwen Team](https://github.com/QwenLM/Qwen)
* **Dataset:** [dalle2](https://huggingface.co/datasets/dalle2)
* **Training Framework:** [Unsloth](https://github.com/unslothai/unsloth)
* **Inspiration:** [3Blue1Brown](https://www.3blue1brown.com/) and the Manim Community
---
---
β
**Star this model** if you find it useful!
---
|