hubert-base-ls960-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1234
  • Accuracy: 0.7391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4277 1.0 25 1.5627 0.4783
1.4946 2.0 50 1.4727 0.5217
1.051 3.0 75 1.3207 0.6087
1.0897 4.0 100 1.3614 0.6522
1.1461 5.0 125 1.3143 0.5652
0.6919 6.0 150 1.1131 0.6087
0.7273 7.0 175 1.4138 0.6522
0.5955 8.0 200 1.2106 0.6957
0.4823 9.0 225 1.1681 0.6087
0.5178 10.0 250 1.1616 0.6522
0.4635 11.0 275 0.9685 0.7826
0.4622 12.0 300 0.9625 0.7826
0.3048 13.0 325 1.0364 0.7391
0.1576 14.0 350 1.0571 0.7391
0.1876 15.0 375 1.1234 0.7391

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Hcask/distilhubert

Finetuned
(131)
this model

Dataset used to train Hcask/distilhubert

Evaluation results