| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						language: | 
					
					
						
						| 
							 | 
						- en | 
					
					
						
						| 
							 | 
						- it | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- translation | 
					
					
						
						| 
							 | 
						- opus-mt-tc | 
					
					
						
						| 
							 | 
						license: cc-by-4.0 | 
					
					
						
						| 
							 | 
						model-index: | 
					
					
						
						| 
							 | 
						- name: opus-mt-tc-big-it-en | 
					
					
						
						| 
							 | 
						  results: | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      name: Translation ita-eng | 
					
					
						
						| 
							 | 
						      type: translation | 
					
					
						
						| 
							 | 
						      args: ita-eng | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      name: flores101-devtest | 
					
					
						
						| 
							 | 
						      type: flores_101 | 
					
					
						
						| 
							 | 
						      args: ita eng devtest | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - name: BLEU | 
					
					
						
						| 
							 | 
						      type: bleu | 
					
					
						
						| 
							 | 
						      value: 32.8 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      name: Translation ita-eng | 
					
					
						
						| 
							 | 
						      type: translation | 
					
					
						
						| 
							 | 
						      args: ita-eng | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      name: tatoeba-test-v2021-08-07 | 
					
					
						
						| 
							 | 
						      type: tatoeba_mt | 
					
					
						
						| 
							 | 
						      args: ita-eng | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - name: BLEU | 
					
					
						
						| 
							 | 
						      type: bleu | 
					
					
						
						| 
							 | 
						      value: 72.1 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      name: Translation ita-eng | 
					
					
						
						| 
							 | 
						      type: translation | 
					
					
						
						| 
							 | 
						      args: ita-eng | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      name: newstest2009 | 
					
					
						
						| 
							 | 
						      type: wmt-2009-news | 
					
					
						
						| 
							 | 
						      args: ita-eng | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - name: BLEU | 
					
					
						
						| 
							 | 
						      type: bleu | 
					
					
						
						| 
							 | 
						      value: 34.3 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						# opus-mt-tc-big-it-en | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Neural machine translation model for translating from Italian (it) to English (en). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						@inproceedings{tiedemann-thottingal-2020-opus, | 
					
					
						
						| 
							 | 
						    title = "{OPUS}-{MT} {--} Building open translation services for the World", | 
					
					
						
						| 
							 | 
						    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh}, | 
					
					
						
						| 
							 | 
						    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", | 
					
					
						
						| 
							 | 
						    month = nov, | 
					
					
						
						| 
							 | 
						    year = "2020", | 
					
					
						
						| 
							 | 
						    address = "Lisboa, Portugal", | 
					
					
						
						| 
							 | 
						    publisher = "European Association for Machine Translation", | 
					
					
						
						| 
							 | 
						    url = "https://aclanthology.org/2020.eamt-1.61", | 
					
					
						
						| 
							 | 
						    pages = "479--480", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						@inproceedings{tiedemann-2020-tatoeba, | 
					
					
						
						| 
							 | 
						    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", | 
					
					
						
						| 
							 | 
						    author = {Tiedemann, J{\"o}rg}, | 
					
					
						
						| 
							 | 
						    booktitle = "Proceedings of the Fifth Conference on Machine Translation", | 
					
					
						
						| 
							 | 
						    month = nov, | 
					
					
						
						| 
							 | 
						    year = "2020", | 
					
					
						
						| 
							 | 
						    address = "Online", | 
					
					
						
						| 
							 | 
						    publisher = "Association for Computational Linguistics", | 
					
					
						
						| 
							 | 
						    url = "https://aclanthology.org/2020.wmt-1.139", | 
					
					
						
						| 
							 | 
						    pages = "1174--1182", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Model info | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						* Release: 2022-02-25 | 
					
					
						
						| 
							 | 
						* source language(s): ita | 
					
					
						
						| 
							 | 
						* target language(s): eng | 
					
					
						
						| 
							 | 
						* model: transformer-big | 
					
					
						
						| 
							 | 
						* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) | 
					
					
						
						| 
							 | 
						* tokenization: SentencePiece (spm32k,spm32k) | 
					
					
						
						| 
							 | 
						* original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-eng/opusTCv20210807+bt_transformer-big_2022-02-25.zip) | 
					
					
						
						| 
							 | 
						* more information released models: [OPUS-MT ita-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-eng/README.md) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Usage | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						A short example code: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from transformers import MarianMTModel, MarianTokenizer | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						src_text = [ | 
					
					
						
						| 
							 | 
						    "So chi è il mio nemico.", | 
					
					
						
						| 
							 | 
						    "Tom è illetterato; non capisce assolutamente nulla." | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_name = "pytorch-models/opus-mt-tc-big-it-en" | 
					
					
						
						| 
							 | 
						tokenizer = MarianTokenizer.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						model = MarianMTModel.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						for t in translated: | 
					
					
						
						| 
							 | 
						    print( tokenizer.decode(t, skip_special_tokens=True) ) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# expected output: | 
					
					
						
						| 
							 | 
						#     I know who my enemy is. | 
					
					
						
						| 
							 | 
						#     Tom is illiterate; he understands absolutely nothing. | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						You can also use OPUS-MT models with the transformers pipelines, for example: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from transformers import pipeline | 
					
					
						
						| 
							 | 
						pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-it-en") | 
					
					
						
						| 
							 | 
						print(pipe("So chi è il mio nemico.")) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# expected output: I know who my enemy is. | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Benchmarks | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						* test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-eng/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) | 
					
					
						
						| 
							 | 
						* test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-eng/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) | 
					
					
						
						| 
							 | 
						* benchmark results: [benchmark_results.txt](benchmark_results.txt) | 
					
					
						
						| 
							 | 
						* benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						| langpair | testset | chr-F | BLEU  | #sent | #words | | 
					
					
						
						| 
							 | 
						|----------|---------|-------|-------|-------|--------| | 
					
					
						
						| 
							 | 
						| ita-eng | tatoeba-test-v2021-08-07 | 0.82288 | 72.1 | 17320 | 119214 | | 
					
					
						
						| 
							 | 
						| ita-eng | flores101-devtest | 0.62115 | 32.8 | 1012 | 24721 | | 
					
					
						
						| 
							 | 
						| ita-eng | newssyscomb2009 | 0.59822 | 34.4 | 502 | 11818 | | 
					
					
						
						| 
							 | 
						| ita-eng | newstest2009 | 0.59646 | 34.3 | 2525 | 65399 | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Acknowledgements | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Model conversion info | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						* transformers version: 4.16.2 | 
					
					
						
						| 
							 | 
						* OPUS-MT git hash: 3405783 | 
					
					
						
						| 
							 | 
						* port time: Wed Apr 13 19:40:08 EEST 2022 | 
					
					
						
						| 
							 | 
						* port machine: LM0-400-22516.local | 
					
					
						
						| 
							 | 
						
 |