Hoixi's picture
End of training
140b21f verified
metadata
library_name: transformers
license: mit
base_model: microsoft/table-transformer-structure-recognition-v1.1-all
tags:
  - generated_from_trainer
datasets:
  - tr-fin_table-dataset-v4
model-index:
  - name: table-transformer-structure-recognition-v1.1-all-finetuned-v4
    results: []

table-transformer-structure-recognition-v1.1-all-finetuned-v4

This model is a fine-tuned version of microsoft/table-transformer-structure-recognition-v1.1-all on the tr-fin_table-dataset-v4 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.8161 12.5 50 1.8594
2.1356 25.0 100 1.8244
1.9666 37.5 150 1.7812
2.686 50.0 200 1.7117
1.8873 62.5 250 1.6662
2.0797 75.0 300 1.6360
2.2612 87.5 350 1.6419
1.954 100.0 400 1.6110
2.0358 112.5 450 1.6159
1.9712 125.0 500 1.6164
2.1658 137.5 550 1.6242
2.7702 150.0 600 1.6097
1.9429 162.5 650 1.6083
1.947 175.0 700 1.5989
2.0561 187.5 750 1.6029
2.0323 200.0 800 1.5877
2.0326 212.5 850 1.5870
1.7113 225.0 900 1.5835
1.6647 237.5 950 1.5811
2.2978 250.0 1000 1.5814

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.0