|
--- |
|
license: apache-2.0 |
|
tags: |
|
- bert |
|
- deberta |
|
- text-classification |
|
- fine-tuned |
|
- databricks-dolly |
|
- prompt-category |
|
language: en |
|
datasets: |
|
- databricks/databricks-dolly-15k |
|
base_model: |
|
- microsoft/deberta-v3-base |
|
--- |
|
|
|
# π§ DeBERTa-v3 Base - Prompt Category Classifier (Fine-tuned) |
|
|
|
This model is a fine-tuned version of [`microsoft/deberta-v3-base`](https://huggingface.co/microsoft/deberta-v3-base) on the [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset. |
|
It has been trained to classify the **prompt category** based solely on the **response** text. |
|
|
|
## ποΈ Task |
|
|
|
**Text Classification** |
|
**Input**: Response text |
|
**Output**: One of the predefined categories such as: |
|
- `brainstorming` |
|
- `classification` |
|
- `closed_qa` |
|
- `creative_writing` |
|
- `general_qa` |
|
- `information_extraction` |
|
- `open_qa` |
|
- `summarization` |
|
|
|
## π Evaluation |
|
|
|
The model was evaluated on a balanced version of the dataset. Here are the results: |
|
|
|
- **Validation Accuracy**: ~85.5% |
|
- **F1 Score**: ~85.0% |
|
- Best performance on: `creative_writing`, `classification`, `summarization` |
|
- Room for improvement on: `open_qa` |
|
|
|
## π§ͺ How to Use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("mariadg/deberta-v3-prompt-recognition") |
|
tokenizer = AutoTokenizer.from_pretrained("mariadg/deberta-v3-prompt-recognition") |
|
|
|
text = "The mitochondria is known as the powerhouse of the cell." |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
outputs = model(**inputs) |
|
pred = torch.argmax(outputs.logits, dim=1).item() |
|
|
|
print(pred) # Map this index back to label if needed |
|
``` |
|
## π¦ Label Mapping |
|
|
|
The model outputs a numerical label corresponding to a prompt category. Below is the mapping between label IDs and their respective categories: |
|
|
|
- 0: `brainstorming` |
|
- 1: `classification` |
|
- 2: `closed_qa` |
|
- 3: `creative_writing` |
|
- 4: `general_qa` |
|
- 5: `information_extraction` |
|
- 6: `open_qa` |
|
- 7: `summarization` |
|
|
|
## π οΈ Training Details |
|
|
|
- **Base model**: `microsoft/deberta-v3-base` |
|
- **Framework**: PyTorch |
|
- **Max length**: 256 |
|
- **Batch size**: 16 |
|
- **Epochs**: 4 |
|
- **Loss function**: `CrossEntropyLoss` |
|
|
|
## π License |
|
|
|
Apache 2.0 |
|
|
|
--- |
|
|
|
π Fine-tuned for research purposes. |