InPeerReview's picture
Upload 161 files
226675b verified
"""
Code borrowed from https://github.com/zijundeng/pytorch-semantic-segmentation
MIT License
Copyright (c) 2017 ZijunDeng
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import random
import math
import numbers
import numpy as np
import torchvision.transforms as torch_tr
import torch
from PIL import Image, ImageFilter, ImageOps
from skimage.filters import gaussian
class RandomGaussianBlur(object):
"""
Apply Gaussian Blur
"""
def __call__(self, imgs, mask):
img, imgB = imgs[0], imgs[1]
sigma = 0.15 + random.random() * 1.15
blurred_img = gaussian(np.array(img), sigma=sigma, channel_axis=-1)
blurred_img *= 255
blurred_imgB = gaussian(np.array(imgB), sigma=sigma, channel_axis=-1)
blurred_imgB *= 255
return Image.fromarray(blurred_img.astype(np.uint8)), Image.fromarray(blurred_imgB.astype(np.uint8)), mask
class RandomScale(object):
def __init__(self, scale_list=[0.75, 1.0, 1.25], mode='value'):
self.scale_list = scale_list
self.mode = mode
def __call__(self, img, mask):
oh, ow = img.size
scale_amt = 1.0
if self.mode == 'value':
scale_amt = np.random.choice(self.scale_list, 1)
elif self.mode == 'range':
scale_amt = random.uniform(self.scale_list[0], self.scale_list[-1])
h = int(scale_amt * oh)
w = int(scale_amt * ow)
return img.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)
class SmartCropV1(object):
def __init__(self, crop_size=512,
max_ratio=0.75,
ignore_index=12, nopad=False):
self.crop_size = crop_size
self.max_ratio = max_ratio
self.ignore_index = ignore_index
self.crop = RandomCrop(crop_size, ignore_index=ignore_index, nopad=nopad)
def __call__(self, img, mask):
assert img.size == mask.size
count = 0
while True:
img_crop, mask_crop = self.crop(img.copy(), mask.copy())
count += 1
labels, cnt = np.unique(np.array(mask_crop), return_counts=True)
cnt = cnt[labels != self.ignore_index]
if len(cnt) > 1 and np.max(cnt) / np.sum(cnt) < self.max_ratio:
break
if count > 10:
break
return img_crop, mask_crop
class DeNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
class MaskToTensor(object):
def __call__(self, img):
return torch.from_numpy(np.array(img, dtype=np.int32)).long()
class FreeScale(object):
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = tuple(reversed(size)) # size: (h, w)
self.interpolation = interpolation
def __call__(self, img):
return img.resize(self.size, self.interpolation)
class FlipChannels(object):
def __call__(self, img):
img = np.array(img)[:, :, ::-1]
return Image.fromarray(img.astype(np.uint8))
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, imgs, mask):
img ,imgB = imgs[0], imgs[1]
assert img.size == mask.size
for t in self.transforms:
img, imgB, mask = t([img, imgB], mask)
return img, imgB, mask
class RandomCrop(object):
"""
Take a random crop from the image.
First the image or crop size may need to be adjusted if the incoming image
is too small...
If the image is smaller than the crop, then:
the image is padded up to the size of the crop
unless 'nopad', in which case the crop size is shrunk to fit the image
A random crop is taken such that the crop fits within the image.
If a centroid is passed in, the crop must intersect the centroid.
"""
def __init__(self, size, ignore_index=0, nopad=True):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.ignore_index = ignore_index
self.nopad = nopad
self.pad_color = (0, 0, 0)
def __call__(self, imgs, mask, centroid=None):
img, imgB = imgs[0], imgs[1]
assert img.size == mask.size
w, h = img.size
# ASSUME H, W
th, tw = self.size
if w == tw and h == th:
return img, imgB, mask
if self.nopad:
if th > h or tw > w:
# Instead of padding, adjust crop size to the shorter edge of image.
shorter_side = min(w, h)
th, tw = shorter_side, shorter_side
else:
# Check if we need to pad img to fit for crop_size.
if th > h:
pad_h = (th - h) // 2 + 1
else:
pad_h = 0
if tw > w:
pad_w = (tw - w) // 2 + 1
else:
pad_w = 0
border = (pad_w, pad_h, pad_w, pad_h)
if pad_h or pad_w:
img = ImageOps.expand(img, border=border, fill=self.pad_color)
imgB = ImageOps.expand(imgB, border=border, fill=self.pad_color)
mask = ImageOps.expand(mask, border=border, fill=self.ignore_index)
w, h = img.size
if centroid is not None:
# Need to insure that centroid is covered by crop and that crop
# sits fully within the image
c_x, c_y = centroid
max_x = w - tw
max_y = h - th
x1 = random.randint(c_x - tw, c_x)
x1 = min(max_x, max(0, x1))
y1 = random.randint(c_y - th, c_y)
y1 = min(max_y, max(0, y1))
else:
if w == tw:
x1 = 0
else:
x1 = random.randint(0, w - tw)
if h == th:
y1 = 0
else:
y1 = random.randint(0, h - th)
return img.crop((x1, y1, x1 + tw, y1 + th)), imgB.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class CenterCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class RandomHorizontallyFlip(object):
def __init__(self, p):
self.p = p
def __call__(self, imgs, mask):
img, imgB = imgs[0], imgs[1]
if random.random() < self.p:
return img.transpose(Image.FLIP_LEFT_RIGHT), imgB.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(
Image.FLIP_LEFT_RIGHT)
return img, imgB, mask
class RandomVerticalFlip(object):
def __init__(self, p):
self.p = p
def __call__(self, imgs, mask):
img, imgB = imgs[0], imgs[1]
if random.random() < self.p:
return img.transpose(Image.FLIP_TOP_BOTTOM), imgB.transpose(Image.FLIP_TOP_BOTTOM), mask.transpose(
Image.FLIP_TOP_BOTTOM)
return img, imgB, mask
class FreeScale(object):
def __init__(self, size):
self.size = tuple(reversed(size)) # size: (h, w)
def __call__(self, img, mask):
assert img.size == mask.size
return img.resize(self.size, Image.BILINEAR), mask.resize(self.size, Image.NEAREST)
class Scale(object):
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w >= h and w == self.size) or (h >= w and h == self.size):
return img, mask
if w > h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
class RandomSizedCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.45, 1.0) * area
aspect_ratio = random.uniform(0.5, 2)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
mask = mask.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
return img.resize((self.size, self.size), Image.BILINEAR), mask.resize((self.size, self.size),
Image.NEAREST)
# Fallback
scale = Scale(self.size)
crop = CenterCrop(self.size)
return crop(*scale(img, mask))
class RandomRotate(object):
def __init__(self, degree):
self.degree = degree
def __call__(self, img, mask):
rotate_degree = random.random() * 2 * self.degree - self.degree
return img.rotate(rotate_degree, Image.BILINEAR), mask.rotate(rotate_degree, Image.NEAREST)
class RandomSized(object):
def __init__(self, size):
self.size = size
self.scale = Scale(self.size)
self.crop = RandomCrop(self.size)
def __call__(self, img, mask):
assert img.size == mask.size
w = int(random.uniform(0.5, 2) * img.size[0])
h = int(random.uniform(0.5, 2) * img.size[1])
img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST)
return self.crop(*self.scale(img, mask))
class SlidingCropOld(object):
def __init__(self, crop_size, stride_rate, ignore_label):
self.crop_size = crop_size
self.stride_rate = stride_rate
self.ignore_label = ignore_label
def _pad(self, img, mask):
h, w = img.shape[: 2]
pad_h = max(self.crop_size - h, 0)
pad_w = max(self.crop_size - w, 0)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
return img, mask
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
long_size = max(h, w)
img = np.array(img)
mask = np.array(mask)
if long_size > self.crop_size:
stride = int(math.ceil(self.crop_size * self.stride_rate))
h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
img_sublist, mask_sublist = [], []
for yy in range(h_step_num):
for xx in range(w_step_num):
sy, sx = yy * stride, xx * stride
ey, ex = sy + self.crop_size, sx + self.crop_size
img_sub = img[sy: ey, sx: ex, :]
mask_sub = mask[sy: ey, sx: ex]
img_sub, mask_sub = self._pad(img_sub, mask_sub)
img_sublist.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
mask_sublist.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
return img_sublist, mask_sublist
else:
img, mask = self._pad(img, mask)
img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
return img, mask
class SlidingCrop(object):
def __init__(self, crop_size, stride_rate, ignore_label):
self.crop_size = crop_size
self.stride_rate = stride_rate
self.ignore_label = ignore_label
def _pad(self, img, mask):
h, w = img.shape[: 2]
pad_h = max(self.crop_size - h, 0)
pad_w = max(self.crop_size - w, 0)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
return img, mask, h, w
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
long_size = max(h, w)
img = np.array(img)
mask = np.array(mask)
if long_size > self.crop_size:
stride = int(math.ceil(self.crop_size * self.stride_rate))
h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
img_slices, mask_slices, slices_info = [], [], []
for yy in range(h_step_num):
for xx in range(w_step_num):
sy, sx = yy * stride, xx * stride
ey, ex = sy + self.crop_size, sx + self.crop_size
img_sub = img[sy: ey, sx: ex, :]
mask_sub = mask[sy: ey, sx: ex]
img_sub, mask_sub, sub_h, sub_w = self._pad(img_sub, mask_sub)
img_slices.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
mask_slices.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
slices_info.append([sy, ey, sx, ex, sub_h, sub_w])
return img_slices, mask_slices, slices_info
else:
img, mask, sub_h, sub_w = self._pad(img, mask)
img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]
class PadImage(object):
def __init__(self, size, ignore_index):
self.size = size
self.ignore_index = ignore_index
def __call__(self, img, mask):
assert img.size == mask.size
th, tw = self.size, self.size
w, h = img.size
if w > tw or h > th :
wpercent = (tw/float(w))
target_h = int((float(img.size[1])*float(wpercent)))
img, mask = img.resize((tw, target_h), Image.BICUBIC), mask.resize((tw, target_h), Image.NEAREST)
w, h = img.size
##Pad
img = ImageOps.expand(img, border=(0,0,tw-w, th-h), fill=0)
mask = ImageOps.expand(mask, border=(0,0,tw-w, th-h), fill=self.ignore_index)
return img, mask
class Resize(object):
"""
Resize image to exact size of crop
"""
def __init__(self, size):
self.size = (size, size)
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w == h and w == self.size):
return img, mask
return (img.resize(self.size, Image.BICUBIC),
mask.resize(self.size, Image.NEAREST))
class ResizeImage(object):
"""
Resize image to exact size of crop
"""
def __init__(self, size):
self.size = (size, size)
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w == h and w == self.size):
return img, mask
return (img.resize(self.size, Image.BICUBIC),
mask)
class RandomSizeAndCrop(object):
def __init__(self, size, crop_nopad,
scale_min=1, scale_max=1.2, ignore_index=0, pre_size=None):
self.size = size
self.crop = RandomCrop(self.size, ignore_index=ignore_index, nopad=crop_nopad)
self.scale_min = scale_min
self.scale_max = scale_max
self.pre_size = pre_size
def __call__(self, imgs, mask, centroid=None):
img, imgB = imgs[0], imgs[1]
assert img.size == mask.size
# first, resize such that shorter edge is pre_size
if self.pre_size is None:
scale_amt = 1.
elif img.size[1] < img.size[0]:
scale_amt = self.pre_size / img.size[1]
else:
scale_amt = self.pre_size / img.size[0]
scale_amt *= random.uniform(self.scale_min, self.scale_max)
w, h = [int(i * scale_amt) for i in img.size]
if centroid is not None:
centroid = [int(c * scale_amt) for c in centroid]
img, imgB, mask = img.resize((w, h), Image.BICUBIC), imgB.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)
return self.crop([img, imgB], mask, centroid)
class ColorJitter(object):
"""Randomly change the brightness, contrast and saturation of an image.
Args:
brightness (float): How much to jitter brightness. brightness_factor
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
contrast (float): How much to jitter contrast. contrast_factor
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
saturation (float): How much to jitter saturation. saturation_factor
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
hue(float): How much to jitter hue. hue_factor is chosen uniformly from
[-hue, hue]. Should be >=0 and <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
@staticmethod
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness > 0:
brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness)
transforms.append(
torch_tr.Lambda(lambda img: adjust_brightness(img, brightness_factor)))
if contrast > 0:
contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
transforms.append(
torch_tr.Lambda(lambda img: adjust_contrast(img, contrast_factor)))
if saturation > 0:
saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation)
transforms.append(
torch_tr.Lambda(lambda img: adjust_saturation(img, saturation_factor)))
if hue > 0:
hue_factor = np.random.uniform(-hue, hue)
transforms.append(
torch_tr.Lambda(lambda img: adjust_hue(img, hue_factor)))
np.random.shuffle(transforms)
transform = torch_tr.Compose(transforms)
return transform
def __call__(self, img):
"""
Args:
img (PIL Image): Input image.
Returns:
PIL Image: Color jittered image.
"""
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue)
return transform(img)