InPeerReview's picture
Update README.md
de279d4 verified
## πŸ› οΈ Requirements
### Environment
- **Linux system**, Windows is not tested, depending on whether and can be installed `causal-conv1d` and `mamba-ssm`
- **Python** 3.8+, recommended 3.10
- **PyTorch** 2.0 or higher, recommended 2.1.0
- **CUDA** 11.7 or higher, recommended 12.1
### Environment Installation
It is recommended to use Miniconda for installation. The following commands will create a virtual environment named `stnr` and install PyTorch. In the following installation steps, the default installed CUDA version is 12.1. If your CUDA version is not 12.1, please modify it according to the actual situation.
```bash
# Create conda environment
conda create -n stnr python=3.8 -y
conda activate stnr
# Install PyTorch
pip install torch==2.1.0 torchvision==0.14.0 torchaudio==0.13.0
# Install dependencies
pip install causal_conv1d mamba_ssm packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
# Or simply run
pip install -r requirements.txt
```
## πŸ“ Dataset Preparation
We evaluate our method on five remote sensing change detection datasets: **WHU-CD**, **LEVIR-CD**, **LEVIR-CD+**, **SYSU-CD**, and **SVCD**.
| Dataset | Link |
|---------|------|
| WHU-CD | [Download](https://aistudio.baidu.com/datasetdetail/251669) |
| LEVIR-CD | [Download](https://opendatalab.org.cn/OpenDataLab/LEVIR-CD) |
| LEVIR-CD+ | [Download](https://www.cvmart.net/dataSets/detail/1385) |
| SYSU-CD | [Download](https://mail2sysueducn-my.sharepoint.com/personal/liumx23_mail2_sysu_edu_cn/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fliumx23%5Fmail2%5Fsysu%5Fedu%5Fcn%2FDocuments%2FSYSU%2DCD&ga=1) |
| SVCD | [Download](https://aistudio.baidu.com/datasetdetail/78676) |
Please organize the datasets as follows:
```
${DATASET_ROOT} # Dataset root directory, for example: /home/username/data/LEVIR-CD
β”œβ”€β”€ A
β”‚ β”œβ”€β”€ train_1_1.png
β”‚ β”œβ”€β”€ train_1_2.png
β”‚ β”œβ”€β”€...
β”‚ β”œβ”€β”€ val_1_1.png
β”‚ β”œβ”€β”€ val_1_2.png
β”‚ β”œβ”€β”€...
β”‚ β”œβ”€β”€ test_1_1.png
β”‚ β”œβ”€β”€ test_1_2.png
β”‚ └── ...
β”œβ”€β”€ B
β”‚ β”œβ”€β”€ train_1_1.png
β”‚ β”œβ”€β”€ train_1_2.png
β”‚ β”œβ”€β”€...
β”‚ β”œβ”€β”€ val_1_1.png
β”‚ β”œβ”€β”€ val_1_2.png
β”‚ β”œβ”€β”€...
β”‚ β”œβ”€β”€ test_1_1.png
β”‚ β”œβ”€β”€ test_1_2.png
β”‚ └── ...
β”œβ”€β”€ label
β”‚ β”œβ”€β”€ train_1_1.png
β”‚ β”œβ”€β”€ train_1_2.png
β”‚ β”œβ”€β”€...
β”‚ β”œβ”€β”€ val_1_1.png
β”‚ β”œβ”€β”€ val_1_2.png
β”‚ β”œβ”€β”€...
β”‚ β”œβ”€β”€ test_1_1.png
β”‚ β”œβ”€β”€ test_1_2.png
β”‚ └── ...
β”œβ”€β”€ list
β”‚ β”œβ”€β”€ train.txt
β”‚ β”œβ”€β”€ val.txt
β”‚ └── test.txt
```
## πŸ”§ Model Training and Testing
All configuration for model training and testing is stored in the local folder `config`. Below are the example commands to train and test the model on the **LEVIR-CD** dataset.
### Example of Training on LEVIR-CD Dataset
```bash
python train_cd.py --config/levir/levir.json
```
### Example of Training on LEVIR-CD Dataset
```bash
python test_cd.py --config/levir/levir_test.json
```
## πŸ“‚ Project Structure
```
STNR-Det/
β”œβ”€β”€ config/ # Configuration files for training/testing
β”‚ β”œβ”€β”€ levir_cd_mamba.json
β”‚ β”œβ”€β”€ levir_test_cd_mamba.json
β”‚ └── ...
β”œβ”€β”€ core/ # Core functionality (e.g., models, loss functions)
β”‚ └── ...
β”œβ”€β”€ data/ # Data loading and preprocessing scripts
β”‚ └── ...
β”œβ”€β”€ misc/ # Miscellaneous utility scripts
β”‚ └── ...
β”œβ”€β”€ models/ # Model architectures and components
β”‚ └── ...
β”œβ”€β”€ .gitattributes # Git attributes for version control
β”œβ”€β”€ README.md # Project README (this file)
β”œβ”€β”€ requirement.txt # Python package dependencies
β”œβ”€β”€ test_cd.py # Testing script for the model
└── train_cd.py # Training script for the model
```
## πŸ™ Acknowledgement
We sincerely thank the following works for their contributions:
- [CDMamba](https://github.com/zmoka-zht/CDMamba) – A state-of-the-art method for remote sensing change detection that inspired and influenced parts of this work.
- [MambaDFuse](https://github.com/Lizhe1228/MambaDFuse) – A valuable method for feature fusion that informed our approach.