Model Details
This is an example model demonstrating how to run the AutoRound format for a visual language model on vLLM. Some visual modules have been quantized to 8-bit precision.
Run The Model
this pr https://github.com/vllm-project/vllm/pull/21802 is required.
vllm serve Intel/Qwen2.5-VL-7B-Instruct-int4-mixed-AutoRound --dtype bfloat16 --port 8001 --max-model-len 10000
curl --noproxy '*' http://localhost:8001/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "Intel/Qwen2.5-VL-7B-Instruct-int4-mixed-AutoRound",
"messages": [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
}
},
{
"type": "text",
"text": "璇锋弿杩拌繖寮犲浘"
}
]
}
],
"max_tokens": 512
}'
Generate the model
import torch
from auto_round import AutoRound, AutoRoundMLLM
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
model_name = "Qwen/Qwen2.5-VL-7B-Instruct/"
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name,trust_remote_code=True)
layer_config = {}
for n, m in model.named_modules():
if "visual" in n:
if not isinstance(m, torch.nn.Linear):
continue
if "mlp.gate_proj" in n or "mlp.down_proj" in n or "mlp.up_proj" in n:
layer_config[n] = {"bits": 16}
else:
layer_config[n] = {"bits": 8}
autoround = AutoRoundMLLM(model, tokenizer, processor=processor, iters=200, group_size=128,layer_config=layer_config)
autoround.quantize_and_save("./Qwen2.5-VL-7B-Instruct-autoround)
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support
Model tree for Intel/Qwen2.5-VL-7B-Instruct-int4-mixed-AutoRound
Base model
Qwen/Qwen2.5-VL-7B-Instruct