|
--- |
|
language: en |
|
license: apache-2.0 |
|
datasets: |
|
- nyu-mll/glue |
|
--- |
|
|
|
# LoNAS Model Card: lonas-bert-base-glue |
|
|
|
The super-networks fine-tuned on BERT-base with [GLUE benchmark](https://gluebenchmark.com/) using LoNAS. |
|
|
|
## Model Details |
|
|
|
### Information |
|
|
|
- **Model name:** lonas-bert-base-glue |
|
- **Base model:** [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) |
|
- **Subnetwork version:** Super-network |
|
- **NNCF Configurations:** [nncf_config/glue](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/glue) |
|
|
|
### Adapter Configuration |
|
|
|
- **LoRA rank:** 8 |
|
- **LoRA alpha:** 16 |
|
- **LoRA target modules:** query, value |
|
|
|
|
|
### Training and Evaluation |
|
|
|
[GLUE benchmark](https://gluebenchmark.com/) |
|
|
|
### Training Hyperparameters |
|
|
|
| Task | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI | |
|
|------------|------|------|-------|------|-------|------|------|------| |
|
| Epoch | 80 | 35 | 60 | 80 | 60 | 80 | 60 | 40 | |
|
| Batch size | 32 | 32 | 64 | 64 | 64 | 64 | 64 | 64 | |
|
| Learning rate | 3e-4 | 5e-4 | 5e-4 | 3e-4 | 3e-4 | 4e-4 | 3e-4 | 4e-4 | |
|
| Max length | 128 | 128 | 128 | 128 | 128 | 256 | 128 | 128 | |
|
|
|
## How to use |
|
|
|
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands): |
|
```bash |
|
CUDA_VISIBLE_DEVICES=${DEVICES} python run_glue.py \ |
|
--task_name ${TASK} \ |
|
--model_name_or_path bert-base-uncased \ |
|
--do_eval \ |
|
--do_search \ |
|
--per_device_eval_batch_size 64 \ |
|
--max_seq_length ${MAX_LENGTH} \ |
|
--lora \ |
|
--lora_weights lonas-bert-base-glue/lonas-bert-base-${TASK} \ |
|
--nncf_config nncf_config/glue/nncf_lonas_bert_base_${TASK}.json \ |
|
--output_dir lonas-bert-base-glue/lonas-bert-base-${TASK}/results |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
Results of the optimal sub-network discoverd from the super-network: |
|
|
|
| Method | Trainable Parameter Ratio | GFLOPs | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI | AVG | |
|
|-------------|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------| |
|
| LoRA | 0.27% | 11.2 | 65.85 | 84.46 | 88.73 | 57.58 | 92.06 | 90.62 | 89.41 | 83.00 | 81.46 | |
|
| **LoNAS** | 0.27% | **8.0** | 70.76 | 88.97 | 88.28 | 61.12 | 93.23 | 91.21 | 88.55 | 82.00 | **83.02** | |
|
|
|
|
|
## Model Sources |
|
|
|
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS) |
|
|
|
**Paper:** |
|
- [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models](https://aclanthology.org/2024.lrec-main.940) |
|
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372) |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{munoz-etal-2024-lonas, |
|
title = "{L}o{NAS}: Elastic Low-Rank Adapters for Efficient Large Language Models", |
|
author = "Munoz, Juan Pablo and |
|
Yuan, Jinjie and |
|
Zheng, Yi and |
|
Jain, Nilesh", |
|
editor = "Calzolari, Nicoletta and |
|
Kan, Min-Yen and |
|
Hoste, Veronique and |
|
Lenci, Alessandro and |
|
Sakti, Sakriani and |
|
Xue, Nianwen", |
|
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", |
|
month = may, |
|
year = "2024", |
|
address = "Torino, Italia", |
|
publisher = "ELRA and ICCL", |
|
url = "https://aclanthology.org/2024.lrec-main.940", |
|
pages = "10760--10776", |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Apache-2.0 |
|
|