|
--- |
|
language: en |
|
license: apache-2.0 |
|
--- |
|
|
|
# LoNAS Model Card: lonas-bloomz-7b-math |
|
|
|
The super-network fine-tuned on BLOOMZ-7B with some math reasoning datasets using LoNAS. |
|
|
|
## Model Details |
|
|
|
### Information |
|
|
|
- **Model name:** lonas-bloomz-7b-math |
|
- **Base model:** [BLOOMZ-7b](https://huggingface.co/bigscience/bloomz-7b1) |
|
- **Domain:** Math |
|
- **Subnetwork version:** Super-network |
|
- **NNCF Configuration:** [nncf_lonas_bloomz_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_math/nncf_lonas_bloomz_7b.json) |
|
|
|
### Adapter Configuration |
|
|
|
- **LoRA rank:** 32 |
|
- **LoRA alpha:** 64 |
|
- **LoRA target modules:** query_key_value, dense_h_to_4h, dense_4h_to_h |
|
|
|
### Training Hyperparameters |
|
|
|
- **Batch size:** 16 |
|
- **Learning rate:** 3e-4 |
|
- **Epoch:** 8 |
|
|
|
### Training Data |
|
|
|
Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA). |
|
|
|
### Evaluation Data |
|
|
|
[GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json) and [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json) |
|
|
|
|
|
## How to use |
|
|
|
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation): |
|
```bash |
|
CUDA_VISIBLE_DEVICES=${DEVICES} python run_math.py \ |
|
--dataset_path None \ |
|
--model_name_or_path bigscience/bloomz-7b1 \ |
|
--lora \ |
|
--lora_weights lonas-bloomz-7b-math \ |
|
--nncf_config nncf_config/unified_math/nncf_lonas_bloomz_7b.json \ |
|
--do_test \ |
|
--output_dir lonas-bloomz-7b-math/results |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
Results of the heuristic sub-network discoverd from the super-network: |
|
|
|
| Method | Total Params. | TFLOPs | GSM8K | AQuA | MAWPS | SVAMP | Average | |
|
|------------|---------------|-----------|-------|------|-------|-------|-----------| |
|
| LoRA | 7.1B | 1.8 | 17.4 | 21.3 | 70.2 | 41.0 | **37.5** | |
|
| **LoNAS** | **6.1B** | **1.5** | 18.6 | 22.0 | 76.5 | 31.8 | 37.2 | |
|
|
|
|
|
## Model Sources |
|
|
|
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS) |
|
|
|
**Paper:** |
|
- [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models](https://aclanthology.org/2024.lrec-main.940) |
|
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372) |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{munoz-etal-2024-lonas, |
|
title = "{L}o{NAS}: Elastic Low-Rank Adapters for Efficient Large Language Models", |
|
author = "Munoz, Juan Pablo and |
|
Yuan, Jinjie and |
|
Zheng, Yi and |
|
Jain, Nilesh", |
|
editor = "Calzolari, Nicoletta and |
|
Kan, Min-Yen and |
|
Hoste, Veronique and |
|
Lenci, Alessandro and |
|
Sakti, Sakriani and |
|
Xue, Nianwen", |
|
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", |
|
month = may, |
|
year = "2024", |
|
address = "Torino, Italia", |
|
publisher = "ELRA and ICCL", |
|
url = "https://aclanthology.org/2024.lrec-main.940", |
|
pages = "10760--10776", |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Apache-2.0 |
|
|