SentenceTransformer based on thenlper/gte-large

This is a sentence-transformers model finetuned from thenlper/gte-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: thenlper/gte-large
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JFernandoGRE/gtelarge-colombian-corporationnames")
# Run inference
sentences = [
    'COMERCIALIZADORA MERCURIO LTDA',
    'SOCIEDAD COMERCIALIZADORA MERCURIO SAS',
    'COMPAÑIA AGROFORESTAL DE COLOMBIA S.A.S',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 14,872 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 13.11 tokens
    • max: 31 tokens
    • min: 5 tokens
    • mean: 11.86 tokens
    • max: 30 tokens
    • 0: ~83.60%
    • 1: ~16.40%
  • Samples:
    sentence1 sentence2 label
    INVERSIONES G2R SAS INVERSIONES GYR SAS 0
    COMERCIALIZADORA M M SAS COMERCIALIZADORA SAN FERNANDO SAS 0
    GRUPO AGROINDUSTRIAL HACIENDA LA GLORIA S A SUCURSAL COLOMBIA GRUPO AGROINDUSTRIAL HACIENDA LA GLORIA SA SUCURSAL COLOMBIA 1
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 3,718 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 12.67 tokens
    • max: 31 tokens
    • min: 5 tokens
    • mean: 12.06 tokens
    • max: 40 tokens
    • 0: ~85.40%
    • 1: ~14.60%
  • Samples:
    sentence1 sentence2 label
    DEL LLANO S.A. DEL LLANO S.A 1
    FAST TERMINAL SANTA MARTA S.A.S. FAST TERMINAL SANTA MARTA SAS 1
    INVERSIONES AEO SAS INVERSIONES ACESCO SAS 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 1e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.182
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.182
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss
0.1075 100 0.2721 0.2108
0.2151 200 0.1582 0.1573
0.3226 300 0.0882 0.0809
0.4301 400 0.0552 0.0576
0.5376 500 0.0425 0.0446
0.6452 600 0.0301 0.0366
0.7527 700 0.0259 0.0425
0.8602 800 0.0365 0.0417
0.9677 900 0.0324 0.0325
1.0753 1000 0.021 0.0372
1.1828 1100 0.0206 0.0460
1.2903 1200 0.0214 0.0370
1.3978 1300 0.0305 0.0335
1.5054 1400 0.0171 0.0335
1.6129 1500 0.0204 0.0269
1.7204 1600 0.024 0.0289
1.8280 1700 0.0128 0.0294
1.9355 1800 0.0127 0.0289
2.0430 1900 0.0123 0.0391
2.1505 2000 0.0064 0.0333
2.2581 2100 0.0088 0.0314
2.3656 2200 0.0106 0.0271
2.4731 2300 0.0015 0.0303
2.5806 2400 0.0178 0.0255
2.6882 2500 0.012 0.0266
2.7957 2600 0.0078 0.0230
2.9032 2700 0.0045 0.0234
3.0108 2800 0.0133 0.0241
3.1183 2900 0.0052 0.0244
3.2258 3000 0.0054 0.0246
3.3333 3100 0.0096 0.0221
3.4409 3200 0.0073 0.0242
3.5484 3300 0.0029 0.0227
3.6559 3400 0.0075 0.0229
3.7634 3500 0.0086 0.0227
3.8710 3600 0.003 0.0240
3.9785 3700 0.0026 0.0240
4.0860 3800 0.0024 0.0242
4.1935 3900 0.0021 0.0240
4.3011 4000 0.004 0.0231
4.4086 4100 0.0014 0.0229
4.5161 4200 0.0086 0.0221
4.6237 4300 0.005 0.0221
4.7312 4400 0.007 0.0216
4.8387 4500 0.0015 0.0216
4.9462 4600 0.0011 0.0216

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 2.14.4
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
5
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for JFernandoGRE/gtelarge-colombian-corporationnames

Base model

thenlper/gte-large
Finetuned
(18)
this model