SentenceTransformer based on thenlper/gte-large
This is a sentence-transformers model finetuned from thenlper/gte-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JFernandoGRE/gtelarge-colombian-corporationnames")
# Run inference
sentences = [
'COMERCIALIZADORA MERCURIO LTDA',
'SOCIEDAD COMERCIALIZADORA MERCURIO SAS',
'COMPAÑIA AGROFORESTAL DE COLOMBIA S.A.S',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 14,872 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 13.11 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 11.86 tokens
- max: 30 tokens
- 0: ~83.60%
- 1: ~16.40%
- Samples:
sentence1 sentence2 label INVERSIONES G2R SAS
INVERSIONES GYR SAS
0
COMERCIALIZADORA M M SAS
COMERCIALIZADORA SAN FERNANDO SAS
0
GRUPO AGROINDUSTRIAL HACIENDA LA GLORIA S A SUCURSAL COLOMBIA
GRUPO AGROINDUSTRIAL HACIENDA LA GLORIA SA SUCURSAL COLOMBIA
1
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 3,718 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 12.67 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 12.06 tokens
- max: 40 tokens
- 0: ~85.40%
- 1: ~14.60%
- Samples:
sentence1 sentence2 label DEL LLANO S.A.
DEL LLANO S.A
1
FAST TERMINAL SANTA MARTA S.A.S.
FAST TERMINAL SANTA MARTA SAS
1
INVERSIONES AEO SAS
INVERSIONES ACESCO SAS
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 1e-05num_train_epochs
: 5warmup_ratio
: 0.182fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.182warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1075 | 100 | 0.2721 | 0.2108 |
0.2151 | 200 | 0.1582 | 0.1573 |
0.3226 | 300 | 0.0882 | 0.0809 |
0.4301 | 400 | 0.0552 | 0.0576 |
0.5376 | 500 | 0.0425 | 0.0446 |
0.6452 | 600 | 0.0301 | 0.0366 |
0.7527 | 700 | 0.0259 | 0.0425 |
0.8602 | 800 | 0.0365 | 0.0417 |
0.9677 | 900 | 0.0324 | 0.0325 |
1.0753 | 1000 | 0.021 | 0.0372 |
1.1828 | 1100 | 0.0206 | 0.0460 |
1.2903 | 1200 | 0.0214 | 0.0370 |
1.3978 | 1300 | 0.0305 | 0.0335 |
1.5054 | 1400 | 0.0171 | 0.0335 |
1.6129 | 1500 | 0.0204 | 0.0269 |
1.7204 | 1600 | 0.024 | 0.0289 |
1.8280 | 1700 | 0.0128 | 0.0294 |
1.9355 | 1800 | 0.0127 | 0.0289 |
2.0430 | 1900 | 0.0123 | 0.0391 |
2.1505 | 2000 | 0.0064 | 0.0333 |
2.2581 | 2100 | 0.0088 | 0.0314 |
2.3656 | 2200 | 0.0106 | 0.0271 |
2.4731 | 2300 | 0.0015 | 0.0303 |
2.5806 | 2400 | 0.0178 | 0.0255 |
2.6882 | 2500 | 0.012 | 0.0266 |
2.7957 | 2600 | 0.0078 | 0.0230 |
2.9032 | 2700 | 0.0045 | 0.0234 |
3.0108 | 2800 | 0.0133 | 0.0241 |
3.1183 | 2900 | 0.0052 | 0.0244 |
3.2258 | 3000 | 0.0054 | 0.0246 |
3.3333 | 3100 | 0.0096 | 0.0221 |
3.4409 | 3200 | 0.0073 | 0.0242 |
3.5484 | 3300 | 0.0029 | 0.0227 |
3.6559 | 3400 | 0.0075 | 0.0229 |
3.7634 | 3500 | 0.0086 | 0.0227 |
3.8710 | 3600 | 0.003 | 0.0240 |
3.9785 | 3700 | 0.0026 | 0.0240 |
4.0860 | 3800 | 0.0024 | 0.0242 |
4.1935 | 3900 | 0.0021 | 0.0240 |
4.3011 | 4000 | 0.004 | 0.0231 |
4.4086 | 4100 | 0.0014 | 0.0229 |
4.5161 | 4200 | 0.0086 | 0.0221 |
4.6237 | 4300 | 0.005 | 0.0221 |
4.7312 | 4400 | 0.007 | 0.0216 |
4.8387 | 4500 | 0.0015 | 0.0216 |
4.9462 | 4600 | 0.0011 | 0.0216 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for JFernandoGRE/gtelarge-colombian-corporationnames
Base model
thenlper/gte-large