resnet-kitchen-object

This model is a fine-tuned version of on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1453
  • Accuracy: 0.6505
  • F1: 0.6482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.0106 1.0 224 2.3071 0.2022 0.1647
1.7945 2.0 448 1.8394 0.3369 0.3385
1.6123 3.0 672 1.8258 0.3709 0.3426
1.5264 4.0 896 1.7281 0.4088 0.4060
1.3383 5.0 1120 1.7189 0.4093 0.4109
1.254 6.0 1344 1.4396 0.5012 0.4885
1.1198 7.0 1568 1.4400 0.5090 0.5126
0.9935 8.0 1792 1.5129 0.5177 0.5282
0.8163 9.0 2016 1.2204 0.6067 0.6020
0.5996 10.0 2240 1.2234 0.6179 0.6069
0.4508 11.0 2464 1.1936 0.6354 0.6288
0.3668 12.0 2688 1.1787 0.6364 0.6313
0.2702 13.0 2912 1.1435 0.6441 0.6427
0.2471 14.0 3136 1.1453 0.6505 0.6482

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
1
Safetensors
Model size
11.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results