SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("KhanhDao1512/my-embedding-gemma")
# Run inference
queries = [
"Body: fingerblasting implies it being consentual\n\nmore lol i raped my own sister lol xd randum haha shell always be haunted by what i did to her lmao | Rule: no legal advice do not offer or request legal advice | Violation: no violation",
]
documents = [
'gather evidence see a lawyer immediately preemptive strike',
'a quick google search found this you can trick the card into thinking it’s doing a chipandsignature transaction while the terminal thinks it’s chipandpin the upshot is that you can buy stuff using a stolen card and a pin of 0000 or anything you want\n\nsource securityaffairs co wordpress 25134 cyber crime chip and pin cloning html',
'get 50 discount on all academic writing and editing services at cheapcustomwriting\n\n\nplagiarism free assignment writing essay writing dissertation writing thesis writing phd proposal writing research paper writing coursework writing medical writing term paper writing and resume writing at cheapcustomwriting\n\nour active 50 code is nbxqwruf6ewv\n\nvisit wwwcheapcustomwritingcom',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.9996, 0.3074, 0.1825]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,116 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 32 tokens
- mean: 60.21 tokens
- max: 132 tokens
- min: 11 tokens
- mean: 40.74 tokens
- max: 139 tokens
- min: 6 tokens
- mean: 33.66 tokens
- max: 162 tokens
- Samples:
anchor positive negative Body: banks dont want you to know this click here to know more | Rule: no advertising spam referral links unsolicited advertising and promotional content are not allowed | Violation: no violation
if you could tell your younger self something different about sex what would that be
i am in a contest to win funding for my sex positive film vote here
sheknows offerpop campaign 813112 entry v144417watch golden globe awards 2017 live online in hd coverage without ads vip streams
hd stream quality watch link1forum submitexpress viewtopic php
hd broadcasting quality watch link1forum submitexpress viewtopic php
mobile compatibility yes
no ads no ads adsBody: banks dont want you to know this click here to know more | Rule: no advertising spam referral links unsolicited advertising and promotional content are not allowed | Violation: no violation
if you could tell your younger self something different about sex what would that be
i am in a contest to win funding for my sex positive film vote here
sheknows offerpop campaign 813112 entry v144417double cee x bands epps birds
downloadstream
music theblacksmithed download birdsBody: banks dont want you to know this click here to know more | Rule: no advertising spam referral links unsolicited advertising and promotional content are not allowed | Violation: no violation
hunt for lady for jack off in neighbourhood url inmusi gakq
watch golden globe awards 2017 live online in hd coverage without ads vip streams
hd stream quality watch link1forum submitexpress viewtopic php
hd broadcasting quality watch link1forum submitexpress viewtopic php
mobile compatibility yes
no ads no ads ads - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 1learning_rate
: 2e-05warmup_ratio
: 0.1prompts
: task: sentence similarity | query:
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: task: sentence similarity | query:batch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss |
---|---|---|
2.0 | 8116 | 0.5455 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.0
- Transformers: 4.57.0.dev0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
Model tree for KhanhDao1512/my-embedding-gemma
Base model
google/embeddinggemma-300m