Upload KORMoMoeForCausalLM
Browse files- README.md +199 -0
- config.json +43 -0
- configuration_kormo_moe.py +86 -0
- generation_config.json +7 -0
- model-00001-of-00008.safetensors +3 -0
- model-00002-of-00008.safetensors +3 -0
- model-00003-of-00008.safetensors +3 -0
- model-00004-of-00008.safetensors +3 -0
- model-00005-of-00008.safetensors +3 -0
- model-00006-of-00008.safetensors +3 -0
- model-00007-of-00008.safetensors +3 -0
- model-00008-of-00008.safetensors +3 -0
- model.safetensors.index.json +531 -0
- modeling_kormo_moe.py +574 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,199 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            library_name: transformers
         | 
| 3 | 
            +
            tags: []
         | 
| 4 | 
            +
            ---
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # Model Card for Model ID
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            <!-- Provide a quick summary of what the model is/does. -->
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            ## Model Details
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            ### Model Description
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            <!-- Provide a longer summary of what this model is. -->
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            - **Developed by:** [More Information Needed]
         | 
| 21 | 
            +
            - **Funded by [optional]:** [More Information Needed]
         | 
| 22 | 
            +
            - **Shared by [optional]:** [More Information Needed]
         | 
| 23 | 
            +
            - **Model type:** [More Information Needed]
         | 
| 24 | 
            +
            - **Language(s) (NLP):** [More Information Needed]
         | 
| 25 | 
            +
            - **License:** [More Information Needed]
         | 
| 26 | 
            +
            - **Finetuned from model [optional]:** [More Information Needed]
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ### Model Sources [optional]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            <!-- Provide the basic links for the model. -->
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            - **Repository:** [More Information Needed]
         | 
| 33 | 
            +
            - **Paper [optional]:** [More Information Needed]
         | 
| 34 | 
            +
            - **Demo [optional]:** [More Information Needed]
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Uses
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ### Direct Use
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            [More Information Needed]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ### Downstream Use [optional]
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            [More Information Needed]
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            ### Out-of-Scope Use
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            [More Information Needed]
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ## Bias, Risks, and Limitations
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            <!-- This section is meant to convey both technical and sociotechnical limitations. -->
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            [More Information Needed]
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ### Recommendations
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## How to Get Started with the Model
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            Use the code below to get started with the model.
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            [More Information Needed]
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ## Training Details
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            ### Training Data
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            [More Information Needed]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ### Training Procedure
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            #### Preprocessing [optional]
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            [More Information Needed]
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            #### Training Hyperparameters
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            #### Speeds, Sizes, Times [optional]
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            [More Information Needed]
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            ## Evaluation
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            <!-- This section describes the evaluation protocols and provides the results. -->
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            ### Testing Data, Factors & Metrics
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            #### Testing Data
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            <!-- This should link to a Dataset Card if possible. -->
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            [More Information Needed]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            #### Factors
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            [More Information Needed]
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            #### Metrics
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            <!-- These are the evaluation metrics being used, ideally with a description of why. -->
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            [More Information Needed]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ### Results
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            [More Information Needed]
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            #### Summary
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
             | 
| 135 | 
            +
            ## Model Examination [optional]
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            <!-- Relevant interpretability work for the model goes here -->
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            [More Information Needed]
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            ## Environmental Impact
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            - **Hardware Type:** [More Information Needed]
         | 
| 148 | 
            +
            - **Hours used:** [More Information Needed]
         | 
| 149 | 
            +
            - **Cloud Provider:** [More Information Needed]
         | 
| 150 | 
            +
            - **Compute Region:** [More Information Needed]
         | 
| 151 | 
            +
            - **Carbon Emitted:** [More Information Needed]
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            ## Technical Specifications [optional]
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            ### Model Architecture and Objective
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            [More Information Needed]
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            ### Compute Infrastructure
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            [More Information Needed]
         | 
| 162 | 
            +
             | 
| 163 | 
            +
            #### Hardware
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            [More Information Needed]
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            #### Software
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            [More Information Needed]
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            ## Citation [optional]
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            **BibTeX:**
         | 
| 176 | 
            +
             | 
| 177 | 
            +
            [More Information Needed]
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            **APA:**
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            [More Information Needed]
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            ## Glossary [optional]
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            [More Information Needed]
         | 
| 188 | 
            +
             | 
| 189 | 
            +
            ## More Information [optional]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            [More Information Needed]
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            ## Model Card Authors [optional]
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            [More Information Needed]
         | 
| 196 | 
            +
             | 
| 197 | 
            +
            ## Model Card Contact
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            [More Information Needed]
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,43 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "KORMoMoeForCausalLM"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "attention_bias": false,
         | 
| 6 | 
            +
              "attention_dropout": 0.0,
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_kormo_moe.KORMoMoeConfig",
         | 
| 9 | 
            +
                "AutoModelForCausalLM": "modeling_kormo_moe.KORMoMoeForCausalLM"
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              "bos_token_id": 125030,
         | 
| 12 | 
            +
              "decoder_sparse_step": 1,
         | 
| 13 | 
            +
              "dtype": "bfloat16",
         | 
| 14 | 
            +
              "eos_token_id": 125040,
         | 
| 15 | 
            +
              "head_dim": 128,
         | 
| 16 | 
            +
              "hidden_act": "silu",
         | 
| 17 | 
            +
              "hidden_size": 4096,
         | 
| 18 | 
            +
              "initializer_range": 0.02,
         | 
| 19 | 
            +
              "intermediate_size": 16384,
         | 
| 20 | 
            +
              "mask_type": null,
         | 
| 21 | 
            +
              "max_position_embeddings": 131072,
         | 
| 22 | 
            +
              "mlp_bias": false,
         | 
| 23 | 
            +
              "model_type": "kormo_moe",
         | 
| 24 | 
            +
              "moe_intermediate_size": 16384,
         | 
| 25 | 
            +
              "norm_topk_prob": true,
         | 
| 26 | 
            +
              "num_attention_heads": 32,
         | 
| 27 | 
            +
              "num_experts": 2,
         | 
| 28 | 
            +
              "num_experts_per_tok": 2,
         | 
| 29 | 
            +
              "num_hidden_layers": 40,
         | 
| 30 | 
            +
              "num_key_value_heads": 8,
         | 
| 31 | 
            +
              "pad_token_id": 125032,
         | 
| 32 | 
            +
              "pretrain_tp": 1,
         | 
| 33 | 
            +
              "pretraining_tp": 1,
         | 
| 34 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 35 | 
            +
              "rope_scaling": null,
         | 
| 36 | 
            +
              "rope_theta": 8000000.0,
         | 
| 37 | 
            +
              "shared_expert_intermediate_size": null,
         | 
| 38 | 
            +
              "tie_word_embeddings": false,
         | 
| 39 | 
            +
              "tie_word_embeddins": false,
         | 
| 40 | 
            +
              "transformers_version": "4.57.0",
         | 
| 41 | 
            +
              "use_cache": true,
         | 
| 42 | 
            +
              "vocab_size": 125184
         | 
| 43 | 
            +
            }
         | 
    	
        configuration_kormo_moe.py
    ADDED
    
    | @@ -0,0 +1,86 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # <저장된_모델_경로>/configuration_kormo_moe.py
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers import PretrainedConfig
         | 
| 4 | 
            +
            from transformers.modeling_rope_utils import rope_config_validation
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class KORMoMoeConfig(PretrainedConfig):
         | 
| 8 | 
            +
                model_type = "kormo_moe"
         | 
| 9 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 10 | 
            +
                
         | 
| 11 | 
            +
                def __init__(
         | 
| 12 | 
            +
                    self,
         | 
| 13 | 
            +
                    vocab_size=112576,
         | 
| 14 | 
            +
                    hidden_size=6144,
         | 
| 15 | 
            +
                    intermediate_size=21504,
         | 
| 16 | 
            +
                    num_hidden_layers=48,
         | 
| 17 | 
            +
                    num_attention_heads=40,
         | 
| 18 | 
            +
                    num_key_value_heads=8,
         | 
| 19 | 
            +
                    hidden_act="silu",
         | 
| 20 | 
            +
                    max_position_embeddings=131072,
         | 
| 21 | 
            +
                    initializer_range=0.02,
         | 
| 22 | 
            +
                    rms_norm_eps=1e-05,
         | 
| 23 | 
            +
                    use_cache=True,
         | 
| 24 | 
            +
                    pad_token_id=None,
         | 
| 25 | 
            +
                    bos_token_id=0,
         | 
| 26 | 
            +
                    eos_token_id=1,
         | 
| 27 | 
            +
                    pretraining_tp=1,
         | 
| 28 | 
            +
                    tie_word_embeddings=False,
         | 
| 29 | 
            +
                    rope_theta=500000.0,
         | 
| 30 | 
            +
                    attention_bias=False,
         | 
| 31 | 
            +
                    attention_dropout=0.0,
         | 
| 32 | 
            +
                    rope_scaling=None,
         | 
| 33 | 
            +
                    mlp_bias=False,
         | 
| 34 | 
            +
                    head_dim=128,
         | 
| 35 | 
            +
                    # MoE specific
         | 
| 36 | 
            +
                    num_experts=2,
         | 
| 37 | 
            +
                    num_experts_per_tok=2,
         | 
| 38 | 
            +
                    moe_intermediate_size=None,
         | 
| 39 | 
            +
                    shared_expert_intermediate_size=None,
         | 
| 40 | 
            +
                    norm_topk_prob=True,
         | 
| 41 | 
            +
                    decoder_sparse_step=1,
         | 
| 42 | 
            +
                    **kwargs,
         | 
| 43 | 
            +
                ):
         | 
| 44 | 
            +
                    self.vocab_size = vocab_size
         | 
| 45 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 46 | 
            +
                    self.hidden_size = hidden_size
         | 
| 47 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 48 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 49 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 50 | 
            +
                    
         | 
| 51 | 
            +
                    if num_key_value_heads is None:
         | 
| 52 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 53 | 
            +
                    
         | 
| 54 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 55 | 
            +
                    self.hidden_act = hidden_act
         | 
| 56 | 
            +
                    self.initializer_range = initializer_range
         | 
| 57 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 58 | 
            +
                    self.pretraining_tp = pretraining_tp
         | 
| 59 | 
            +
                    self.use_cache = use_cache
         | 
| 60 | 
            +
                    self.rope_theta = rope_theta
         | 
| 61 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 62 | 
            +
                    self.attention_bias = attention_bias
         | 
| 63 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 64 | 
            +
                    self.mlp_bias = mlp_bias
         | 
| 65 | 
            +
                    self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
         | 
| 66 | 
            +
                    self.mask_type = None
         | 
| 67 | 
            +
                    
         | 
| 68 | 
            +
                    # MoE specific
         | 
| 69 | 
            +
                    self.num_experts = num_experts
         | 
| 70 | 
            +
                    self.num_experts_per_tok = num_experts_per_tok
         | 
| 71 | 
            +
                    self.moe_intermediate_size = moe_intermediate_size if moe_intermediate_size is not None else intermediate_size
         | 
| 72 | 
            +
                    self.shared_expert_intermediate_size = shared_expert_intermediate_size
         | 
| 73 | 
            +
                    self.norm_topk_prob = norm_topk_prob
         | 
| 74 | 
            +
                    self.decoder_sparse_step = decoder_sparse_step
         | 
| 75 | 
            +
                    
         | 
| 76 | 
            +
                    if self.rope_scaling is not None and "type" in self.rope_scaling:
         | 
| 77 | 
            +
                        self.rope_scaling["rope_type"] = self.rope_scaling["type"]
         | 
| 78 | 
            +
                    rope_config_validation(self)
         | 
| 79 | 
            +
                    
         | 
| 80 | 
            +
                    super().__init__(
         | 
| 81 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 82 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 83 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 84 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 85 | 
            +
                        **kwargs,
         | 
| 86 | 
            +
                    )
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 125030,
         | 
| 4 | 
            +
              "eos_token_id": 125040,
         | 
| 5 | 
            +
              "pad_token_id": 125032,
         | 
| 6 | 
            +
              "transformers_version": "4.57.0"
         | 
| 7 | 
            +
            }
         | 
    	
        model-00001-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:6c1dfa9cefb050062dba0d9a2dada46857381a60c7ca3f3acfdf60e6f009d139
         | 
| 3 | 
            +
            size 4934753320
         | 
    	
        model-00002-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:91f3d80afe8bc8aabb757f98e27055b44edf75729182932cb7cd3a4bedc283ca
         | 
| 3 | 
            +
            size 4983021920
         | 
    	
        model-00003-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b16a41b26b9f43f3d75bf093ce58877a9704b028aa03e732fe3628de7b0dea8f
         | 
| 3 | 
            +
            size 4932690560
         | 
    	
        model-00004-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9f7021347a7d01814ed0dfad2802cbae0ff7f08631c3744654677991952349a9
         | 
| 3 | 
            +
            size 4932707184
         | 
    	
        model-00005-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e44ed78f1682fb3ef95b784aeebe7faae8a670c2b6b8c1d04f074a51695dbe4c
         | 
| 3 | 
            +
            size 4983005368
         | 
    	
        model-00006-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f9acc30f653240e4445f17dd01f2bbd032a204628a7cd3932360f7e92e7a38c5
         | 
| 3 | 
            +
            size 4932707184
         | 
    	
        model-00007-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b56a5a079335c2573b0e74e5e14b4f8997c71f7a051171dc7ffaa03a5ca3a7fa
         | 
| 3 | 
            +
            size 4983005368
         | 
    	
        model-00008-of-00008.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:6aa028f48047eb405328ee1fba2f346c6e2511c060788424fd0484089eb55446
         | 
| 3 | 
            +
            size 2938203792
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,531 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_parameters": 18810015744,
         | 
| 4 | 
            +
                "total_size": 37620031488
         | 
| 5 | 
            +
              },
         | 
| 6 | 
            +
              "weight_map": {
         | 
| 7 | 
            +
                "lm_head.weight": "model-00008-of-00008.safetensors",
         | 
| 8 | 
            +
                "model.embed_tokens.weight": "model-00001-of-00008.safetensors",
         | 
| 9 | 
            +
                "model.layers.0.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 10 | 
            +
                "model.layers.0.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 11 | 
            +
                "model.layers.0.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 12 | 
            +
                "model.layers.0.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 13 | 
            +
                "model.layers.0.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 14 | 
            +
                "model.layers.0.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 15 | 
            +
                "model.layers.0.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
         | 
| 16 | 
            +
                "model.layers.0.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 17 | 
            +
                "model.layers.0.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 18 | 
            +
                "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 19 | 
            +
                "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 20 | 
            +
                "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 21 | 
            +
                "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 22 | 
            +
                "model.layers.1.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 23 | 
            +
                "model.layers.1.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 24 | 
            +
                "model.layers.1.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 25 | 
            +
                "model.layers.1.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 26 | 
            +
                "model.layers.1.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 27 | 
            +
                "model.layers.1.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 28 | 
            +
                "model.layers.1.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
         | 
| 29 | 
            +
                "model.layers.1.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 30 | 
            +
                "model.layers.1.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 31 | 
            +
                "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 32 | 
            +
                "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 33 | 
            +
                "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 34 | 
            +
                "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 35 | 
            +
                "model.layers.10.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 36 | 
            +
                "model.layers.10.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 37 | 
            +
                "model.layers.10.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 38 | 
            +
                "model.layers.10.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 39 | 
            +
                "model.layers.10.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 40 | 
            +
                "model.layers.10.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 41 | 
            +
                "model.layers.10.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
         | 
| 42 | 
            +
                "model.layers.10.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 43 | 
            +
                "model.layers.10.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 44 | 
            +
                "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 45 | 
            +
                "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 46 | 
            +
                "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 47 | 
            +
                "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 48 | 
            +
                "model.layers.11.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 49 | 
            +
                "model.layers.11.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 50 | 
            +
                "model.layers.11.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 51 | 
            +
                "model.layers.11.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 52 | 
            +
                "model.layers.11.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 53 | 
            +
                "model.layers.11.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 54 | 
            +
                "model.layers.11.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
         | 
| 55 | 
            +
                "model.layers.11.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 56 | 
            +
                "model.layers.11.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 57 | 
            +
                "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 58 | 
            +
                "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 59 | 
            +
                "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 60 | 
            +
                "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 61 | 
            +
                "model.layers.12.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 62 | 
            +
                "model.layers.12.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 63 | 
            +
                "model.layers.12.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 64 | 
            +
                "model.layers.12.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 65 | 
            +
                "model.layers.12.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 66 | 
            +
                "model.layers.12.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 67 | 
            +
                "model.layers.12.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
         | 
| 68 | 
            +
                "model.layers.12.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 69 | 
            +
                "model.layers.12.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 70 | 
            +
                "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 71 | 
            +
                "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 72 | 
            +
                "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 73 | 
            +
                "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 74 | 
            +
                "model.layers.13.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 75 | 
            +
                "model.layers.13.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 76 | 
            +
                "model.layers.13.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 77 | 
            +
                "model.layers.13.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 78 | 
            +
                "model.layers.13.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 79 | 
            +
                "model.layers.13.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 80 | 
            +
                "model.layers.13.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
         | 
| 81 | 
            +
                "model.layers.13.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 82 | 
            +
                "model.layers.13.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 83 | 
            +
                "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 84 | 
            +
                "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 85 | 
            +
                "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 86 | 
            +
                "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 87 | 
            +
                "model.layers.14.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 88 | 
            +
                "model.layers.14.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 89 | 
            +
                "model.layers.14.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 90 | 
            +
                "model.layers.14.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 91 | 
            +
                "model.layers.14.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 92 | 
            +
                "model.layers.14.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 93 | 
            +
                "model.layers.14.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
         | 
| 94 | 
            +
                "model.layers.14.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 95 | 
            +
                "model.layers.14.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
         | 
| 96 | 
            +
                "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 97 | 
            +
                "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 98 | 
            +
                "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 99 | 
            +
                "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 100 | 
            +
                "model.layers.15.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 101 | 
            +
                "model.layers.15.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 102 | 
            +
                "model.layers.15.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 103 | 
            +
                "model.layers.15.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 104 | 
            +
                "model.layers.15.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 105 | 
            +
                "model.layers.15.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 106 | 
            +
                "model.layers.15.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
         | 
| 107 | 
            +
                "model.layers.15.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 108 | 
            +
                "model.layers.15.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 109 | 
            +
                "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 110 | 
            +
                "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 111 | 
            +
                "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 112 | 
            +
                "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
         | 
| 113 | 
            +
                "model.layers.16.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 114 | 
            +
                "model.layers.16.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 115 | 
            +
                "model.layers.16.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 116 | 
            +
                "model.layers.16.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 117 | 
            +
                "model.layers.16.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 118 | 
            +
                "model.layers.16.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 119 | 
            +
                "model.layers.16.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
         | 
| 120 | 
            +
                "model.layers.16.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 121 | 
            +
                "model.layers.16.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 122 | 
            +
                "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 123 | 
            +
                "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 124 | 
            +
                "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 125 | 
            +
                "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 126 | 
            +
                "model.layers.17.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 127 | 
            +
                "model.layers.17.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 128 | 
            +
                "model.layers.17.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 129 | 
            +
                "model.layers.17.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 130 | 
            +
                "model.layers.17.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 131 | 
            +
                "model.layers.17.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 132 | 
            +
                "model.layers.17.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
         | 
| 133 | 
            +
                "model.layers.17.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 134 | 
            +
                "model.layers.17.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 135 | 
            +
                "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 136 | 
            +
                "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 137 | 
            +
                "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 138 | 
            +
                "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 139 | 
            +
                "model.layers.18.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 140 | 
            +
                "model.layers.18.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 141 | 
            +
                "model.layers.18.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 142 | 
            +
                "model.layers.18.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 143 | 
            +
                "model.layers.18.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 144 | 
            +
                "model.layers.18.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 145 | 
            +
                "model.layers.18.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
         | 
| 146 | 
            +
                "model.layers.18.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 147 | 
            +
                "model.layers.18.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 148 | 
            +
                "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 149 | 
            +
                "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 150 | 
            +
                "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 151 | 
            +
                "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 152 | 
            +
                "model.layers.19.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 153 | 
            +
                "model.layers.19.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 154 | 
            +
                "model.layers.19.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 155 | 
            +
                "model.layers.19.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 156 | 
            +
                "model.layers.19.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 157 | 
            +
                "model.layers.19.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 158 | 
            +
                "model.layers.19.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
         | 
| 159 | 
            +
                "model.layers.19.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 160 | 
            +
                "model.layers.19.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 161 | 
            +
                "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 162 | 
            +
                "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 163 | 
            +
                "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 164 | 
            +
                "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 165 | 
            +
                "model.layers.2.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 166 | 
            +
                "model.layers.2.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 167 | 
            +
                "model.layers.2.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 168 | 
            +
                "model.layers.2.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 169 | 
            +
                "model.layers.2.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 170 | 
            +
                "model.layers.2.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 171 | 
            +
                "model.layers.2.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
         | 
| 172 | 
            +
                "model.layers.2.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 173 | 
            +
                "model.layers.2.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 174 | 
            +
                "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 175 | 
            +
                "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 176 | 
            +
                "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 177 | 
            +
                "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 178 | 
            +
                "model.layers.20.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 179 | 
            +
                "model.layers.20.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 180 | 
            +
                "model.layers.20.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 181 | 
            +
                "model.layers.20.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 182 | 
            +
                "model.layers.20.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 183 | 
            +
                "model.layers.20.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 184 | 
            +
                "model.layers.20.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
         | 
| 185 | 
            +
                "model.layers.20.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 186 | 
            +
                "model.layers.20.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
         | 
| 187 | 
            +
                "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 188 | 
            +
                "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 189 | 
            +
                "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 190 | 
            +
                "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 191 | 
            +
                "model.layers.21.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 192 | 
            +
                "model.layers.21.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 193 | 
            +
                "model.layers.21.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 194 | 
            +
                "model.layers.21.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 195 | 
            +
                "model.layers.21.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 196 | 
            +
                "model.layers.21.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 197 | 
            +
                "model.layers.21.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
         | 
| 198 | 
            +
                "model.layers.21.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 199 | 
            +
                "model.layers.21.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 200 | 
            +
                "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 201 | 
            +
                "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 202 | 
            +
                "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 203 | 
            +
                "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
         | 
| 204 | 
            +
                "model.layers.22.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 205 | 
            +
                "model.layers.22.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 206 | 
            +
                "model.layers.22.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 207 | 
            +
                "model.layers.22.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 208 | 
            +
                "model.layers.22.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 209 | 
            +
                "model.layers.22.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 210 | 
            +
                "model.layers.22.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
         | 
| 211 | 
            +
                "model.layers.22.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 212 | 
            +
                "model.layers.22.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 213 | 
            +
                "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 214 | 
            +
                "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 215 | 
            +
                "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 216 | 
            +
                "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 217 | 
            +
                "model.layers.23.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 218 | 
            +
                "model.layers.23.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 219 | 
            +
                "model.layers.23.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 220 | 
            +
                "model.layers.23.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 221 | 
            +
                "model.layers.23.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 222 | 
            +
                "model.layers.23.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 223 | 
            +
                "model.layers.23.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
         | 
| 224 | 
            +
                "model.layers.23.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 225 | 
            +
                "model.layers.23.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 226 | 
            +
                "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 227 | 
            +
                "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 228 | 
            +
                "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 229 | 
            +
                "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 230 | 
            +
                "model.layers.24.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 231 | 
            +
                "model.layers.24.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 232 | 
            +
                "model.layers.24.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 233 | 
            +
                "model.layers.24.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 234 | 
            +
                "model.layers.24.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 235 | 
            +
                "model.layers.24.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 236 | 
            +
                "model.layers.24.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
         | 
| 237 | 
            +
                "model.layers.24.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 238 | 
            +
                "model.layers.24.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 239 | 
            +
                "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 240 | 
            +
                "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 241 | 
            +
                "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 242 | 
            +
                "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 243 | 
            +
                "model.layers.25.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 244 | 
            +
                "model.layers.25.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 245 | 
            +
                "model.layers.25.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 246 | 
            +
                "model.layers.25.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 247 | 
            +
                "model.layers.25.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 248 | 
            +
                "model.layers.25.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 249 | 
            +
                "model.layers.25.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
         | 
| 250 | 
            +
                "model.layers.25.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 251 | 
            +
                "model.layers.25.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
         | 
| 252 | 
            +
                "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 253 | 
            +
                "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 254 | 
            +
                "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 255 | 
            +
                "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 256 | 
            +
                "model.layers.26.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 257 | 
            +
                "model.layers.26.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 258 | 
            +
                "model.layers.26.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 259 | 
            +
                "model.layers.26.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 260 | 
            +
                "model.layers.26.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 261 | 
            +
                "model.layers.26.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 262 | 
            +
                "model.layers.26.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
         | 
| 263 | 
            +
                "model.layers.26.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 264 | 
            +
                "model.layers.26.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 265 | 
            +
                "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 266 | 
            +
                "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 267 | 
            +
                "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 268 | 
            +
                "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
         | 
| 269 | 
            +
                "model.layers.27.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 270 | 
            +
                "model.layers.27.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 271 | 
            +
                "model.layers.27.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 272 | 
            +
                "model.layers.27.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 273 | 
            +
                "model.layers.27.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 274 | 
            +
                "model.layers.27.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 275 | 
            +
                "model.layers.27.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
         | 
| 276 | 
            +
                "model.layers.27.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 277 | 
            +
                "model.layers.27.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 278 | 
            +
                "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 279 | 
            +
                "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 280 | 
            +
                "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 281 | 
            +
                "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 282 | 
            +
                "model.layers.28.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 283 | 
            +
                "model.layers.28.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 284 | 
            +
                "model.layers.28.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 285 | 
            +
                "model.layers.28.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 286 | 
            +
                "model.layers.28.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 287 | 
            +
                "model.layers.28.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 288 | 
            +
                "model.layers.28.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
         | 
| 289 | 
            +
                "model.layers.28.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 290 | 
            +
                "model.layers.28.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 291 | 
            +
                "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 292 | 
            +
                "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 293 | 
            +
                "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 294 | 
            +
                "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 295 | 
            +
                "model.layers.29.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 296 | 
            +
                "model.layers.29.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 297 | 
            +
                "model.layers.29.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 298 | 
            +
                "model.layers.29.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 299 | 
            +
                "model.layers.29.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 300 | 
            +
                "model.layers.29.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 301 | 
            +
                "model.layers.29.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
         | 
| 302 | 
            +
                "model.layers.29.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 303 | 
            +
                "model.layers.29.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 304 | 
            +
                "model.layers.29.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 305 | 
            +
                "model.layers.29.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 306 | 
            +
                "model.layers.29.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 307 | 
            +
                "model.layers.29.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 308 | 
            +
                "model.layers.3.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 309 | 
            +
                "model.layers.3.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 310 | 
            +
                "model.layers.3.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 311 | 
            +
                "model.layers.3.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 312 | 
            +
                "model.layers.3.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 313 | 
            +
                "model.layers.3.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 314 | 
            +
                "model.layers.3.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
         | 
| 315 | 
            +
                "model.layers.3.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 316 | 
            +
                "model.layers.3.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
         | 
| 317 | 
            +
                "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 318 | 
            +
                "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 319 | 
            +
                "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 320 | 
            +
                "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 321 | 
            +
                "model.layers.30.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 322 | 
            +
                "model.layers.30.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 323 | 
            +
                "model.layers.30.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 324 | 
            +
                "model.layers.30.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 325 | 
            +
                "model.layers.30.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 326 | 
            +
                "model.layers.30.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 327 | 
            +
                "model.layers.30.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
         | 
| 328 | 
            +
                "model.layers.30.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 329 | 
            +
                "model.layers.30.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 330 | 
            +
                "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 331 | 
            +
                "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 332 | 
            +
                "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 333 | 
            +
                "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 334 | 
            +
                "model.layers.31.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 335 | 
            +
                "model.layers.31.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 336 | 
            +
                "model.layers.31.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 337 | 
            +
                "model.layers.31.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 338 | 
            +
                "model.layers.31.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 339 | 
            +
                "model.layers.31.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 340 | 
            +
                "model.layers.31.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
         | 
| 341 | 
            +
                "model.layers.31.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 342 | 
            +
                "model.layers.31.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
         | 
| 343 | 
            +
                "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 344 | 
            +
                "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 345 | 
            +
                "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 346 | 
            +
                "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 347 | 
            +
                "model.layers.32.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 348 | 
            +
                "model.layers.32.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 349 | 
            +
                "model.layers.32.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 350 | 
            +
                "model.layers.32.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 351 | 
            +
                "model.layers.32.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 352 | 
            +
                "model.layers.32.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 353 | 
            +
                "model.layers.32.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
         | 
| 354 | 
            +
                "model.layers.32.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 355 | 
            +
                "model.layers.32.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 356 | 
            +
                "model.layers.32.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 357 | 
            +
                "model.layers.32.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 358 | 
            +
                "model.layers.32.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 359 | 
            +
                "model.layers.32.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
         | 
| 360 | 
            +
                "model.layers.33.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 361 | 
            +
                "model.layers.33.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 362 | 
            +
                "model.layers.33.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 363 | 
            +
                "model.layers.33.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 364 | 
            +
                "model.layers.33.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 365 | 
            +
                "model.layers.33.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 366 | 
            +
                "model.layers.33.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
         | 
| 367 | 
            +
                "model.layers.33.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 368 | 
            +
                "model.layers.33.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 369 | 
            +
                "model.layers.33.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 370 | 
            +
                "model.layers.33.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 371 | 
            +
                "model.layers.33.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 372 | 
            +
                "model.layers.33.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 373 | 
            +
                "model.layers.34.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 374 | 
            +
                "model.layers.34.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 375 | 
            +
                "model.layers.34.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 376 | 
            +
                "model.layers.34.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 377 | 
            +
                "model.layers.34.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 378 | 
            +
                "model.layers.34.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 379 | 
            +
                "model.layers.34.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
         | 
| 380 | 
            +
                "model.layers.34.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 381 | 
            +
                "model.layers.34.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 382 | 
            +
                "model.layers.34.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 383 | 
            +
                "model.layers.34.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 384 | 
            +
                "model.layers.34.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 385 | 
            +
                "model.layers.34.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 386 | 
            +
                "model.layers.35.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 387 | 
            +
                "model.layers.35.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 388 | 
            +
                "model.layers.35.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 389 | 
            +
                "model.layers.35.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 390 | 
            +
                "model.layers.35.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 391 | 
            +
                "model.layers.35.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 392 | 
            +
                "model.layers.35.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
         | 
| 393 | 
            +
                "model.layers.35.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 394 | 
            +
                "model.layers.35.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 395 | 
            +
                "model.layers.35.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 396 | 
            +
                "model.layers.35.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 397 | 
            +
                "model.layers.35.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 398 | 
            +
                "model.layers.35.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 399 | 
            +
                "model.layers.36.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 400 | 
            +
                "model.layers.36.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 401 | 
            +
                "model.layers.36.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 402 | 
            +
                "model.layers.36.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 403 | 
            +
                "model.layers.36.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 404 | 
            +
                "model.layers.36.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 405 | 
            +
                "model.layers.36.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
         | 
| 406 | 
            +
                "model.layers.36.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 407 | 
            +
                "model.layers.36.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
         | 
| 408 | 
            +
                "model.layers.36.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 409 | 
            +
                "model.layers.36.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 410 | 
            +
                "model.layers.36.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 411 | 
            +
                "model.layers.36.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 412 | 
            +
                "model.layers.37.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 413 | 
            +
                "model.layers.37.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 414 | 
            +
                "model.layers.37.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 415 | 
            +
                "model.layers.37.mlp.experts.1.down_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 416 | 
            +
                "model.layers.37.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 417 | 
            +
                "model.layers.37.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 418 | 
            +
                "model.layers.37.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
         | 
| 419 | 
            +
                "model.layers.37.pre_attention_layernorm.weight": "model-00008-of-00008.safetensors",
         | 
| 420 | 
            +
                "model.layers.37.pre_mlp_layernorm.weight": "model-00008-of-00008.safetensors",
         | 
| 421 | 
            +
                "model.layers.37.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 422 | 
            +
                "model.layers.37.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 423 | 
            +
                "model.layers.37.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 424 | 
            +
                "model.layers.37.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
         | 
| 425 | 
            +
                "model.layers.38.mlp.experts.0.down_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 426 | 
            +
                "model.layers.38.mlp.experts.0.gate_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 427 | 
            +
                "model.layers.38.mlp.experts.0.up_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 428 | 
            +
                "model.layers.38.mlp.experts.1.down_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 429 | 
            +
                "model.layers.38.mlp.experts.1.gate_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 430 | 
            +
                "model.layers.38.mlp.experts.1.up_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 431 | 
            +
                "model.layers.38.mlp.gate.linear.weight": "model-00008-of-00008.safetensors",
         | 
| 432 | 
            +
                "model.layers.38.pre_attention_layernorm.weight": "model-00008-of-00008.safetensors",
         | 
| 433 | 
            +
                "model.layers.38.pre_mlp_layernorm.weight": "model-00008-of-00008.safetensors",
         | 
| 434 | 
            +
                "model.layers.38.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 435 | 
            +
                "model.layers.38.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 436 | 
            +
                "model.layers.38.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 437 | 
            +
                "model.layers.38.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 438 | 
            +
                "model.layers.39.mlp.experts.0.down_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 439 | 
            +
                "model.layers.39.mlp.experts.0.gate_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 440 | 
            +
                "model.layers.39.mlp.experts.0.up_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 441 | 
            +
                "model.layers.39.mlp.experts.1.down_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 442 | 
            +
                "model.layers.39.mlp.experts.1.gate_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 443 | 
            +
                "model.layers.39.mlp.experts.1.up_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 444 | 
            +
                "model.layers.39.mlp.gate.linear.weight": "model-00008-of-00008.safetensors",
         | 
| 445 | 
            +
                "model.layers.39.pre_attention_layernorm.weight": "model-00008-of-00008.safetensors",
         | 
| 446 | 
            +
                "model.layers.39.pre_mlp_layernorm.weight": "model-00008-of-00008.safetensors",
         | 
| 447 | 
            +
                "model.layers.39.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 448 | 
            +
                "model.layers.39.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 449 | 
            +
                "model.layers.39.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 450 | 
            +
                "model.layers.39.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
         | 
| 451 | 
            +
                "model.layers.4.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 452 | 
            +
                "model.layers.4.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 453 | 
            +
                "model.layers.4.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 454 | 
            +
                "model.layers.4.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 455 | 
            +
                "model.layers.4.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 456 | 
            +
                "model.layers.4.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 457 | 
            +
                "model.layers.4.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
         | 
| 458 | 
            +
                "model.layers.4.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 459 | 
            +
                "model.layers.4.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 460 | 
            +
                "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 461 | 
            +
                "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 462 | 
            +
                "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 463 | 
            +
                "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
         | 
| 464 | 
            +
                "model.layers.5.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 465 | 
            +
                "model.layers.5.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 466 | 
            +
                "model.layers.5.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 467 | 
            +
                "model.layers.5.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 468 | 
            +
                "model.layers.5.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 469 | 
            +
                "model.layers.5.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 470 | 
            +
                "model.layers.5.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
         | 
| 471 | 
            +
                "model.layers.5.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 472 | 
            +
                "model.layers.5.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 473 | 
            +
                "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 474 | 
            +
                "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 475 | 
            +
                "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 476 | 
            +
                "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 477 | 
            +
                "model.layers.6.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 478 | 
            +
                "model.layers.6.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 479 | 
            +
                "model.layers.6.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 480 | 
            +
                "model.layers.6.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 481 | 
            +
                "model.layers.6.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 482 | 
            +
                "model.layers.6.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 483 | 
            +
                "model.layers.6.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
         | 
| 484 | 
            +
                "model.layers.6.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 485 | 
            +
                "model.layers.6.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 486 | 
            +
                "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 487 | 
            +
                "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 488 | 
            +
                "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 489 | 
            +
                "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 490 | 
            +
                "model.layers.7.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 491 | 
            +
                "model.layers.7.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 492 | 
            +
                "model.layers.7.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 493 | 
            +
                "model.layers.7.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 494 | 
            +
                "model.layers.7.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 495 | 
            +
                "model.layers.7.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 496 | 
            +
                "model.layers.7.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
         | 
| 497 | 
            +
                "model.layers.7.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 498 | 
            +
                "model.layers.7.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 499 | 
            +
                "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 500 | 
            +
                "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 501 | 
            +
                "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 502 | 
            +
                "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 503 | 
            +
                "model.layers.8.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 504 | 
            +
                "model.layers.8.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 505 | 
            +
                "model.layers.8.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 506 | 
            +
                "model.layers.8.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 507 | 
            +
                "model.layers.8.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 508 | 
            +
                "model.layers.8.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 509 | 
            +
                "model.layers.8.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
         | 
| 510 | 
            +
                "model.layers.8.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 511 | 
            +
                "model.layers.8.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 512 | 
            +
                "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 513 | 
            +
                "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 514 | 
            +
                "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 515 | 
            +
                "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 516 | 
            +
                "model.layers.9.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 517 | 
            +
                "model.layers.9.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 518 | 
            +
                "model.layers.9.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 519 | 
            +
                "model.layers.9.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 520 | 
            +
                "model.layers.9.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 521 | 
            +
                "model.layers.9.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 522 | 
            +
                "model.layers.9.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
         | 
| 523 | 
            +
                "model.layers.9.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 524 | 
            +
                "model.layers.9.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
         | 
| 525 | 
            +
                "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 526 | 
            +
                "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 527 | 
            +
                "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 528 | 
            +
                "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
         | 
| 529 | 
            +
                "model.norm.weight": "model-00008-of-00008.safetensors"
         | 
| 530 | 
            +
              }
         | 
| 531 | 
            +
            }
         | 
    	
        modeling_kormo_moe.py
    ADDED
    
    | @@ -0,0 +1,574 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Callable, List, Optional, Tuple, Union, Dict
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from torch import nn
         | 
| 4 | 
            +
            import torch.nn.functional as F
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from transformers.activations import ACT2FN
         | 
| 7 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 8 | 
            +
            from transformers.generation import GenerationMixin 
         | 
| 9 | 
            +
            from transformers.integrations import use_kernel_forward_from_hub
         | 
| 10 | 
            +
            from transformers.masking_utils import create_causal_mask
         | 
| 11 | 
            +
            from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
         | 
| 12 | 
            +
            from transformers.modeling_layers import GradientCheckpointingLayer
         | 
| 13 | 
            +
            from transformers.modeling_outputs import (
         | 
| 14 | 
            +
                BaseModelOutputWithPast,
         | 
| 15 | 
            +
                CausalLMOutputWithPast,
         | 
| 16 | 
            +
            )
         | 
| 17 | 
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
         | 
| 18 | 
            +
            from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
         | 
| 19 | 
            +
            from transformers.processing_utils import Unpack
         | 
| 20 | 
            +
            from transformers.utils import can_return_tuple, logging
         | 
| 21 | 
            +
            from .configuration_kormo_moe import KORMoMoeConfig
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            @use_kernel_forward_from_hub("RMSNorm")
         | 
| 27 | 
            +
            class RMSNorm(nn.Module):
         | 
| 28 | 
            +
                """KORMoRMSNorm is equivalent to T5LayerNorm"""
         | 
| 29 | 
            +
                def __init__(self, hidden_size: int, eps: float = 1e-6):
         | 
| 30 | 
            +
                    super().__init__()
         | 
| 31 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 32 | 
            +
                    self.variance_epsilon = eps
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                def forward(self, hidden_states):
         | 
| 35 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 36 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 37 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 38 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 39 | 
            +
                    return (self.weight * hidden_states).to(input_dtype)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                def extra_repr(self):
         | 
| 42 | 
            +
                    return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 46 | 
            +
                """
         | 
| 47 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 48 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 49 | 
            +
                """
         | 
| 50 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 51 | 
            +
                if n_rep == 1:
         | 
| 52 | 
            +
                    return hidden_states
         | 
| 53 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 54 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            def eager_attention_forward(
         | 
| 58 | 
            +
                module: nn.Module,
         | 
| 59 | 
            +
                query: torch.Tensor,
         | 
| 60 | 
            +
                key: torch.Tensor,
         | 
| 61 | 
            +
                value: torch.Tensor,
         | 
| 62 | 
            +
                attention_mask: Optional[torch.Tensor],
         | 
| 63 | 
            +
                scaling: float,
         | 
| 64 | 
            +
                dropout: float = 0.0,
         | 
| 65 | 
            +
                **kwargs,
         | 
| 66 | 
            +
            ):
         | 
| 67 | 
            +
                key_states = repeat_kv(key, module.num_key_value_groups)
         | 
| 68 | 
            +
                value_states = repeat_kv(value, module.num_key_value_groups)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
         | 
| 71 | 
            +
                if attention_mask is not None:
         | 
| 72 | 
            +
                    causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 73 | 
            +
                    attn_weights = attn_weights + causal_mask
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
         | 
| 76 | 
            +
                attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
         | 
| 77 | 
            +
                attn_output = torch.matmul(attn_weights, value_states)
         | 
| 78 | 
            +
                attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                return attn_output, attn_weights
         | 
| 81 | 
            +
             | 
| 82 | 
            +
             | 
| 83 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
         | 
| 84 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 85 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 86 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 87 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 88 | 
            +
                return q_embed.to(q.dtype), k_embed.to(k.dtype)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def rotate_half(x):
         | 
| 92 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 93 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 94 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 95 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            class Attention(nn.Module):
         | 
| 99 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                def __init__(self, config: KORMoMoeConfig, layer_idx: int):
         | 
| 102 | 
            +
                    super().__init__()
         | 
| 103 | 
            +
                    self.config = config
         | 
| 104 | 
            +
                    self.layer_idx = layer_idx
         | 
| 105 | 
            +
                    self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 106 | 
            +
                    self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
         | 
| 107 | 
            +
                    self.scaling = self.head_dim**-0.5
         | 
| 108 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 109 | 
            +
                    self.is_causal = True
         | 
| 110 | 
            +
                    
         | 
| 111 | 
            +
                    self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
         | 
| 112 | 
            +
                    self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
         | 
| 113 | 
            +
                    self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
         | 
| 114 | 
            +
                    self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def forward(
         | 
| 117 | 
            +
                    self,
         | 
| 118 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 119 | 
            +
                    position_embeddings: tuple[torch.Tensor, torch.Tensor],
         | 
| 120 | 
            +
                    attention_mask: Optional[torch.Tensor],
         | 
| 121 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 122 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 123 | 
            +
                    **kwargs,
         | 
| 124 | 
            +
                ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
         | 
| 125 | 
            +
                    input_shape = hidden_states.shape[:-1]
         | 
| 126 | 
            +
                    hidden_shape = (*input_shape, -1, self.head_dim)
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
         | 
| 129 | 
            +
                    key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
         | 
| 130 | 
            +
                    value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    cos, sin = position_embeddings
         | 
| 133 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    if past_key_value is not None:
         | 
| 136 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 137 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    attention_interface: Callable = eager_attention_forward
         | 
| 140 | 
            +
                    if self.config._attn_implementation != "eager":
         | 
| 141 | 
            +
                        attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    attn_output, attn_weights = attention_interface(
         | 
| 144 | 
            +
                        self,
         | 
| 145 | 
            +
                        query_states,
         | 
| 146 | 
            +
                        key_states,
         | 
| 147 | 
            +
                        value_states,
         | 
| 148 | 
            +
                        attention_mask,
         | 
| 149 | 
            +
                        dropout=0.0 if not self.training else self.attention_dropout,
         | 
| 150 | 
            +
                        scaling=self.scaling,
         | 
| 151 | 
            +
                        **kwargs,
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    attn_output = attn_output.reshape(*input_shape, -1).contiguous()
         | 
| 155 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 156 | 
            +
                        
         | 
| 157 | 
            +
                    return attn_output, attn_weights
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            @use_kernel_forward_from_hub("MLP")
         | 
| 161 | 
            +
            class MLP(nn.Module):
         | 
| 162 | 
            +
                """Basic MLP for experts"""
         | 
| 163 | 
            +
                def __init__(self, config, intermediate_size=None):
         | 
| 164 | 
            +
                    super().__init__()
         | 
| 165 | 
            +
                    self.config = config
         | 
| 166 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 167 | 
            +
                    self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
         | 
| 168 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 169 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 170 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 171 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                def forward(self, x):
         | 
| 174 | 
            +
                    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            class MoEGate(nn.Module):
         | 
| 178 | 
            +
                """MoE Gating mechanism"""
         | 
| 179 | 
            +
                def __init__(self, config: KORMoMoeConfig):
         | 
| 180 | 
            +
                    super().__init__()
         | 
| 181 | 
            +
                    self.config = config
         | 
| 182 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 183 | 
            +
                    self.n_routed_experts = config.num_experts
         | 
| 184 | 
            +
                    self.norm_topk_prob = config.norm_topk_prob
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    self.linear = nn.Linear(config.hidden_size, config.num_experts, bias=False)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 189 | 
            +
                    # hidden_states: [batch_size, seq_len, hidden_size]
         | 
| 190 | 
            +
                    batch_size, seq_len, hidden_dim = hidden_states.shape
         | 
| 191 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_dim)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    # Compute router logits
         | 
| 194 | 
            +
                    router_logits = self.linear(hidden_states)  # [batch_size * seq_len, num_experts]
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    # Get routing weights
         | 
| 197 | 
            +
                    routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
         | 
| 198 | 
            +
                    routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
         | 
| 199 | 
            +
                    
         | 
| 200 | 
            +
                    # Normalize routing weights if needed
         | 
| 201 | 
            +
                    if self.norm_topk_prob:
         | 
| 202 | 
            +
                        routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    routing_weights = routing_weights.to(hidden_states.dtype)
         | 
| 205 | 
            +
                    
         | 
| 206 | 
            +
                    return routing_weights, selected_experts
         | 
| 207 | 
            +
             | 
| 208 | 
            +
             | 
| 209 | 
            +
            class KORMoSparseMoeBlock(nn.Module):
         | 
| 210 | 
            +
                """KORMo Sparse MoE Block"""
         | 
| 211 | 
            +
                def __init__(self, config: KORMoMoeConfig):
         | 
| 212 | 
            +
                    super().__init__()
         | 
| 213 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 214 | 
            +
                    self.num_experts = config.num_experts
         | 
| 215 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 216 | 
            +
                    
         | 
| 217 | 
            +
                    self.gate = MoEGate(config)
         | 
| 218 | 
            +
                    self.experts = nn.ModuleList([
         | 
| 219 | 
            +
                        MLP(config, intermediate_size=config.moe_intermediate_size)
         | 
| 220 | 
            +
                        for _ in range(self.num_experts)
         | 
| 221 | 
            +
                    ])
         | 
| 222 | 
            +
                    
         | 
| 223 | 
            +
                    # Shared expert (선택사항)
         | 
| 224 | 
            +
                    self.shared_expert = None
         | 
| 225 | 
            +
                    self.shared_expert_gate = None
         | 
| 226 | 
            +
                    if config.shared_expert_intermediate_size is not None:
         | 
| 227 | 
            +
                        self.shared_expert = MLP(config, intermediate_size=config.shared_expert_intermediate_size)
         | 
| 228 | 
            +
                        self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 231 | 
            +
                    batch_size, seq_len, hidden_dim = hidden_states.shape
         | 
| 232 | 
            +
                    hidden_states_flat = hidden_states.view(-1, hidden_dim)
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                    routing_weights, selected_experts = self.gate(hidden_states)
         | 
| 235 | 
            +
                    final_hidden_states = torch.zeros_like(hidden_states_flat)
         | 
| 236 | 
            +
                    
         | 
| 237 | 
            +
                    expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
         | 
| 238 | 
            +
                    
         | 
| 239 | 
            +
                    for expert_idx in range(self.num_experts):
         | 
| 240 | 
            +
                        expert_layer = self.experts[expert_idx]
         | 
| 241 | 
            +
                        idx, top_x = torch.where(expert_mask[expert_idx])
         | 
| 242 | 
            +
                        
         | 
| 243 | 
            +
                        if top_x.shape[0] == 0:
         | 
| 244 | 
            +
                            continue
         | 
| 245 | 
            +
                        
         | 
| 246 | 
            +
                        top_x_list = top_x.tolist()
         | 
| 247 | 
            +
                        idx_list = idx.tolist()
         | 
| 248 | 
            +
                        
         | 
| 249 | 
            +
                        current_state = hidden_states_flat[None, top_x_list].reshape(-1, hidden_dim)
         | 
| 250 | 
            +
                        current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
         | 
| 251 | 
            +
                        
         | 
| 252 | 
            +
                        final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
         | 
| 253 | 
            +
                    
         | 
| 254 | 
            +
                    final_hidden_states = final_hidden_states.reshape(batch_size, seq_len, hidden_dim)
         | 
| 255 | 
            +
                    
         | 
| 256 | 
            +
                    # Shared expert 추가
         | 
| 257 | 
            +
                    if self.shared_expert is not None:
         | 
| 258 | 
            +
                        hidden_states_flat = hidden_states.view(-1, hidden_dim)
         | 
| 259 | 
            +
                        shared_output = self.shared_expert(hidden_states_flat)
         | 
| 260 | 
            +
                        shared_gate = torch.sigmoid(self.shared_expert_gate(hidden_states_flat))
         | 
| 261 | 
            +
                        final_hidden_states = final_hidden_states + (shared_gate * shared_output).reshape(batch_size, seq_len, hidden_dim)
         | 
| 262 | 
            +
                    
         | 
| 263 | 
            +
                    return final_hidden_states
         | 
| 264 | 
            +
             | 
| 265 | 
            +
             | 
| 266 | 
            +
            class DecoderLayer(GradientCheckpointingLayer):
         | 
| 267 | 
            +
                def __init__(self, config: KORMoMoeConfig, layer_idx: int):
         | 
| 268 | 
            +
                    super().__init__()
         | 
| 269 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 270 | 
            +
                    self.self_attn = Attention(config=config, layer_idx=layer_idx)
         | 
| 271 | 
            +
                    self.mlp = KORMoSparseMoeBlock(config)
         | 
| 272 | 
            +
                    self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 273 | 
            +
                    self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                def forward(
         | 
| 276 | 
            +
                    self,
         | 
| 277 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 278 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 279 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 280 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 281 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 282 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 283 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 284 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 285 | 
            +
                    **kwargs: Unpack[FlashAttentionKwargs],
         | 
| 286 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 287 | 
            +
                    residual = hidden_states
         | 
| 288 | 
            +
                    hidden_states = self.pre_attention_layernorm(hidden_states)
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    # Self Attention
         | 
| 291 | 
            +
                    hidden_states, self_attn_weights = self.self_attn(
         | 
| 292 | 
            +
                        hidden_states=hidden_states,
         | 
| 293 | 
            +
                        attention_mask=attention_mask,
         | 
| 294 | 
            +
                        position_ids=position_ids,
         | 
| 295 | 
            +
                        past_key_value=past_key_value,
         | 
| 296 | 
            +
                        output_attentions=output_attentions,
         | 
| 297 | 
            +
                        use_cache=use_cache,
         | 
| 298 | 
            +
                        cache_position=cache_position,
         | 
| 299 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 300 | 
            +
                        **kwargs,
         | 
| 301 | 
            +
                    )
         | 
| 302 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    # MoE layer
         | 
| 305 | 
            +
                    residual = hidden_states
         | 
| 306 | 
            +
                    hidden_states = self.pre_mlp_layernorm(hidden_states)
         | 
| 307 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 308 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    outputs = (hidden_states,)
         | 
| 311 | 
            +
                    if output_attentions:
         | 
| 312 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    return outputs
         | 
| 315 | 
            +
             | 
| 316 | 
            +
             | 
| 317 | 
            +
            class RotaryEmbedding(nn.Module):
         | 
| 318 | 
            +
                def __init__(self, config: KORMoMoeConfig, device=None):
         | 
| 319 | 
            +
                    super().__init__()
         | 
| 320 | 
            +
                    # BC: "rope_type" was originally "type"
         | 
| 321 | 
            +
                    if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
         | 
| 322 | 
            +
                        self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         | 
| 323 | 
            +
                    else:
         | 
| 324 | 
            +
                        self.rope_type = "default"
         | 
| 325 | 
            +
                    self.max_seq_len_cached = config.max_position_embeddings
         | 
| 326 | 
            +
                    self.original_max_seq_len = config.max_position_embeddings
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    self.config = config
         | 
| 329 | 
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
         | 
| 332 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 333 | 
            +
                    self.original_inv_freq = self.inv_freq
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                @torch.no_grad()
         | 
| 336 | 
            +
                @dynamic_rope_update
         | 
| 337 | 
            +
                def forward(self, x, position_ids):
         | 
| 338 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
         | 
| 339 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
         | 
| 342 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 343 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 344 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 345 | 
            +
                        cos = emb.cos() * self.attention_scaling
         | 
| 346 | 
            +
                        sin = emb.sin() * self.attention_scaling
         | 
| 347 | 
            +
                        return cos, sin
         | 
| 348 | 
            +
             | 
| 349 | 
            +
             | 
| 350 | 
            +
            class KORMoMoePreTrainedModel(PreTrainedModel):
         | 
| 351 | 
            +
                config_class = KORMoMoeConfig
         | 
| 352 | 
            +
                base_model_prefix = "model"
         | 
| 353 | 
            +
                supports_gradient_checkpointing = True
         | 
| 354 | 
            +
                _no_split_modules = ["DecoderLayer"]
         | 
| 355 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 356 | 
            +
                _supports_flash_attn_3 = True
         | 
| 357 | 
            +
                _supports_flash_attn_2 = True
         | 
| 358 | 
            +
                _supports_sdpa = True
         | 
| 359 | 
            +
                _supports_flex_attn = True
         | 
| 360 | 
            +
                _supports_cache_class = True
         | 
| 361 | 
            +
                _supports_quantized_cache = True
         | 
| 362 | 
            +
                _supports_static_cache = True
         | 
| 363 | 
            +
                _supports_attention_backend = True
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                def _init_weights(self, module):
         | 
| 366 | 
            +
                    std = self.config.initializer_range
         | 
| 367 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 368 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 369 | 
            +
                        if module.bias is not None:
         | 
| 370 | 
            +
                            module.bias.data.zero_()
         | 
| 371 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 372 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 373 | 
            +
                        if module.padding_idx is not None:
         | 
| 374 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 375 | 
            +
                    elif isinstance(module, RMSNorm):
         | 
| 376 | 
            +
                        module.weight.data.fill_(1.0)
         | 
| 377 | 
            +
             | 
| 378 | 
            +
             | 
| 379 | 
            +
            class KORMoMoeModel(KORMoMoePreTrainedModel):
         | 
| 380 | 
            +
                def __init__(self, config: KORMoMoeConfig):
         | 
| 381 | 
            +
                    super().__init__(config)
         | 
| 382 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 383 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 386 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 387 | 
            +
                        [DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 388 | 
            +
                    )
         | 
| 389 | 
            +
                    self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 390 | 
            +
                    self.rotary_emb = RotaryEmbedding(config=config)
         | 
| 391 | 
            +
                    self.gradient_checkpointing = False
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    self.post_init()
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                def get_input_embeddings(self):
         | 
| 396 | 
            +
                    return self.embed_tokens
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                def set_input_embeddings(self, value):
         | 
| 399 | 
            +
                    self.embed_tokens = value
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                @can_return_tuple
         | 
| 402 | 
            +
                def forward(
         | 
| 403 | 
            +
                    self,
         | 
| 404 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 405 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 406 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 407 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 408 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 409 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 410 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 411 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 412 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 413 | 
            +
                    **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
         | 
| 414 | 
            +
                ) -> BaseModelOutputWithPast:
         | 
| 415 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 416 | 
            +
                    output_hidden_states = (
         | 
| 417 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 418 | 
            +
                    )
         | 
| 419 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 422 | 
            +
                        raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 425 | 
            +
                        logger.warning_once(
         | 
| 426 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 427 | 
            +
                        )
         | 
| 428 | 
            +
                        use_cache = False
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    if not isinstance(past_key_values, (type(None), Cache)):
         | 
| 431 | 
            +
                        raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
         | 
| 432 | 
            +
                    
         | 
| 433 | 
            +
                    if inputs_embeds is None:
         | 
| 434 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                    if use_cache and past_key_values is None:
         | 
| 437 | 
            +
                        past_key_values = DynamicCache()
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    if cache_position is None:
         | 
| 440 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 441 | 
            +
                        cache_position = torch.arange(
         | 
| 442 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 443 | 
            +
                        )
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    if position_ids is None:
         | 
| 446 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    causal_mask = create_causal_mask(
         | 
| 449 | 
            +
                        config=self.config,
         | 
| 450 | 
            +
                        input_embeds=inputs_embeds,
         | 
| 451 | 
            +
                        attention_mask=attention_mask,
         | 
| 452 | 
            +
                        cache_position=cache_position,
         | 
| 453 | 
            +
                        past_key_values=past_key_values,
         | 
| 454 | 
            +
                        position_ids=position_ids,
         | 
| 455 | 
            +
                    )
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                    hidden_states = inputs_embeds
         | 
| 458 | 
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 461 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                    for decoder_layer in self.layers[: self.config.num_hidden_layers]:
         | 
| 464 | 
            +
                        if output_hidden_states:
         | 
| 465 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                        layer_outputs = decoder_layer(
         | 
| 468 | 
            +
                            hidden_states,
         | 
| 469 | 
            +
                            attention_mask=causal_mask,
         | 
| 470 | 
            +
                            position_ids=position_ids,
         | 
| 471 | 
            +
                            past_key_value=past_key_values,
         | 
| 472 | 
            +
                            output_attentions=output_attentions,
         | 
| 473 | 
            +
                            use_cache=use_cache,
         | 
| 474 | 
            +
                            cache_position=cache_position,
         | 
| 475 | 
            +
                            position_embeddings=position_embeddings,
         | 
| 476 | 
            +
                            **flash_attn_kwargs,
         | 
| 477 | 
            +
                        )
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                        if output_attentions:
         | 
| 482 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                    if output_hidden_states:
         | 
| 487 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 490 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 491 | 
            +
                        past_key_values=past_key_values if use_cache else None,
         | 
| 492 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 493 | 
            +
                        attentions=all_self_attns,
         | 
| 494 | 
            +
                    )
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                
         | 
| 497 | 
            +
            class KORMoMoeForCausalLM(KORMoMoePreTrainedModel, GenerationMixin):
         | 
| 498 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                def __init__(self, config):
         | 
| 501 | 
            +
                    super().__init__(config)
         | 
| 502 | 
            +
                    self.model = KORMoMoeModel(config)
         | 
| 503 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 504 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 505 | 
            +
                    self.post_init()
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                def get_input_embeddings(self):
         | 
| 508 | 
            +
                    return self.model.embed_tokens
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                def set_input_embeddings(self, value):
         | 
| 511 | 
            +
                    self.model.embed_tokens = value
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                def get_output_embeddings(self):
         | 
| 514 | 
            +
                    return self.lm_head
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 517 | 
            +
                    self.lm_head = new_embeddings
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                def set_decoder(self, decoder):
         | 
| 520 | 
            +
                    self.model = decoder
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                def get_decoder(self):
         | 
| 523 | 
            +
                    return self.model
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                @can_return_tuple
         | 
| 526 | 
            +
                def forward(
         | 
| 527 | 
            +
                    self,
         | 
| 528 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 529 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 530 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 531 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 532 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 533 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 534 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 535 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 536 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 537 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 538 | 
            +
                    logits_to_keep: int = 0,
         | 
| 539 | 
            +
                    **kwargs,
         | 
| 540 | 
            +
                ) -> CausalLMOutputWithPast:
         | 
| 541 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 542 | 
            +
                    output_hidden_states = (
         | 
| 543 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 544 | 
            +
                    )
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    outputs: BaseModelOutputWithPast = self.model(
         | 
| 547 | 
            +
                        input_ids=input_ids,
         | 
| 548 | 
            +
                        attention_mask=attention_mask,
         | 
| 549 | 
            +
                        position_ids=position_ids,
         | 
| 550 | 
            +
                        past_key_values=past_key_values,
         | 
| 551 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 552 | 
            +
                        use_cache=use_cache,
         | 
| 553 | 
            +
                        output_attentions=output_attentions,
         | 
| 554 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 555 | 
            +
                        cache_position=cache_position,
         | 
| 556 | 
            +
                        **kwargs,
         | 
| 557 | 
            +
                    )
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    hidden_states = outputs.last_hidden_state
         | 
| 560 | 
            +
                    # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
         | 
| 561 | 
            +
                    slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
         | 
| 562 | 
            +
                    logits = self.lm_head(hidden_states[:, slice_indices, :])
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                    loss = None
         | 
| 565 | 
            +
                    if labels is not None:
         | 
| 566 | 
            +
                        loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 569 | 
            +
                        loss=loss,
         | 
| 570 | 
            +
                        logits=logits,
         | 
| 571 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 572 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 573 | 
            +
                        attentions=outputs.attentions,
         | 
| 574 | 
            +
                    )
         | 
