metadata
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_1_500
results: []
Labira/LabiraPJOK_1_500
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0002
- Validation Loss: 8.9202
- Epoch: 246
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
0.0054 | 8.3302 | 0 |
0.0108 | 7.8442 | 1 |
0.0114 | 7.0958 | 2 |
0.0284 | 6.6490 | 3 |
0.0179 | 7.3034 | 4 |
0.0044 | 8.1785 | 5 |
0.0070 | 8.4039 | 6 |
0.0038 | 8.2728 | 7 |
0.0028 | 8.1154 | 8 |
0.0140 | 8.1207 | 9 |
0.0160 | 8.1384 | 10 |
0.0029 | 8.2978 | 11 |
0.0112 | 8.6940 | 12 |
0.0100 | 8.7433 | 13 |
0.0062 | 8.6486 | 14 |
0.0059 | 8.4821 | 15 |
0.0055 | 8.4559 | 16 |
0.0039 | 8.5136 | 17 |
0.0044 | 8.2783 | 18 |
0.0016 | 8.0974 | 19 |
0.0094 | 7.9739 | 20 |
0.0020 | 8.2513 | 21 |
0.0008 | 8.4637 | 22 |
0.0039 | 8.2813 | 23 |
0.0017 | 8.2027 | 24 |
0.0018 | 8.2722 | 25 |
0.0015 | 8.3875 | 26 |
0.0013 | 8.4975 | 27 |
0.0013 | 8.6171 | 28 |
0.0009 | 8.7272 | 29 |
0.0010 | 8.8335 | 30 |
0.0007 | 8.9168 | 31 |
0.0007 | 8.9992 | 32 |
0.0006 | 9.0661 | 33 |
0.0007 | 9.1103 | 34 |
0.0004 | 9.1424 | 35 |
0.0008 | 9.1573 | 36 |
0.0006 | 9.1666 | 37 |
0.0008 | 9.1732 | 38 |
0.0004 | 9.1781 | 39 |
0.0006 | 9.1867 | 40 |
0.0005 | 9.1986 | 41 |
0.0005 | 9.2203 | 42 |
0.0005 | 9.2512 | 43 |
0.0006 | 9.2889 | 44 |
0.0005 | 9.3360 | 45 |
0.0007 | 9.3759 | 46 |
0.0004 | 9.4144 | 47 |
0.0006 | 9.4461 | 48 |
0.0004 | 9.4718 | 49 |
0.0005 | 9.5113 | 50 |
0.0004 | 9.5425 | 51 |
0.0003 | 9.5667 | 52 |
0.0015 | 9.5468 | 53 |
0.0003 | 9.4515 | 54 |
0.0005 | 9.3881 | 55 |
0.0006 | 9.3797 | 56 |
0.0006 | 9.3887 | 57 |
0.0003 | 9.4038 | 58 |
0.0004 | 9.4206 | 59 |
0.0003 | 9.4417 | 60 |
0.0003 | 9.4627 | 61 |
0.0003 | 9.4775 | 62 |
0.0004 | 9.4930 | 63 |
0.0009 | 9.5593 | 64 |
0.0003 | 9.6068 | 65 |
0.0003 | 9.6416 | 66 |
0.0003 | 9.6715 | 67 |
0.0003 | 9.6956 | 68 |
0.0004 | 9.7146 | 69 |
0.0010 | 9.7344 | 70 |
0.0002 | 9.7946 | 71 |
0.0003 | 9.7965 | 72 |
0.0034 | 9.7113 | 73 |
0.0004 | 9.5730 | 74 |
0.0005 | 9.4858 | 75 |
0.0009 | 9.5826 | 76 |
0.0006 | 9.6923 | 77 |
0.0005 | 9.8243 | 78 |
0.0005 | 9.9368 | 79 |
0.0007 | 10.0514 | 80 |
0.0006 | 10.1386 | 81 |
0.0010 | 10.1427 | 82 |
0.0005 | 9.9261 | 83 |
0.0011 | 9.8122 | 84 |
0.0003 | 9.8724 | 85 |
0.0081 | 9.5494 | 86 |
0.0151 | 8.3043 | 87 |
0.0425 | 9.1449 | 88 |
0.0076 | 8.8560 | 89 |
0.0113 | 8.2403 | 90 |
0.0446 | 7.5457 | 91 |
0.0264 | 7.4204 | 92 |
0.1545 | 8.0820 | 93 |
0.3878 | 8.2238 | 94 |
0.4155 | 6.1718 | 95 |
0.0410 | 5.0625 | 96 |
0.0768 | 4.8214 | 97 |
0.0514 | 4.8477 | 98 |
0.0150 | 5.2002 | 99 |
0.0328 | 5.6224 | 100 |
0.0260 | 5.9887 | 101 |
0.0040 | 6.2793 | 102 |
0.0076 | 6.3696 | 103 |
0.0013 | 6.3642 | 104 |
0.0075 | 6.4379 | 105 |
0.0015 | 6.6379 | 106 |
0.0010 | 6.7736 | 107 |
0.0023 | 6.8582 | 108 |
0.0056 | 6.8884 | 109 |
0.0011 | 6.9125 | 110 |
0.0014 | 6.9437 | 111 |
0.0014 | 6.9807 | 112 |
0.0010 | 7.0239 | 113 |
0.0006 | 7.0602 | 114 |
0.0006 | 7.0919 | 115 |
0.0005 | 7.1213 | 116 |
0.0008 | 7.1457 | 117 |
0.0006 | 7.1679 | 118 |
0.0009 | 7.1871 | 119 |
0.0288 | 7.3166 | 120 |
0.0007 | 7.1397 | 121 |
0.0033 | 6.9025 | 122 |
0.0020 | 6.8509 | 123 |
0.0068 | 6.9533 | 124 |
0.0066 | 7.2446 | 125 |
0.0035 | 7.5351 | 126 |
0.0019 | 7.7354 | 127 |
0.0021 | 7.8376 | 128 |
0.0007 | 7.9071 | 129 |
0.0012 | 7.9566 | 130 |
0.0009 | 8.0014 | 131 |
0.0013 | 8.0186 | 132 |
0.0015 | 8.0123 | 133 |
0.0009 | 7.9870 | 134 |
0.0008 | 7.9685 | 135 |
0.0005 | 7.9599 | 136 |
0.0005 | 7.9553 | 137 |
0.0005 | 7.9574 | 138 |
0.0005 | 7.9631 | 139 |
0.0010 | 7.9780 | 140 |
0.0006 | 7.9910 | 141 |
0.0006 | 8.0078 | 142 |
0.0004 | 8.0283 | 143 |
0.0006 | 8.0500 | 144 |
0.0005 | 8.0704 | 145 |
0.0008 | 8.0899 | 146 |
0.0003 | 8.1078 | 147 |
0.0003 | 8.1243 | 148 |
0.0005 | 8.1384 | 149 |
0.0005 | 8.1534 | 150 |
0.0003 | 8.1678 | 151 |
0.0003 | 8.1827 | 152 |
0.0002 | 8.1955 | 153 |
0.0004 | 8.2093 | 154 |
0.0003 | 8.2218 | 155 |
0.0003 | 8.2338 | 156 |
0.0003 | 8.2454 | 157 |
0.0003 | 8.2566 | 158 |
0.0004 | 8.2696 | 159 |
0.0006 | 8.2696 | 160 |
0.0003 | 8.2700 | 161 |
0.0003 | 8.2745 | 162 |
0.0004 | 8.2834 | 163 |
0.0004 | 8.2918 | 164 |
0.0003 | 8.3035 | 165 |
0.0004 | 8.3182 | 166 |
0.0005 | 8.3357 | 167 |
0.0003 | 8.3499 | 168 |
0.0002 | 8.3616 | 169 |
0.0005 | 8.3759 | 170 |
0.0003 | 8.3901 | 171 |
0.0002 | 8.4020 | 172 |
0.0004 | 8.4105 | 173 |
0.0004 | 8.4120 | 174 |
0.0005 | 8.4166 | 175 |
0.0003 | 8.4209 | 176 |
0.0003 | 8.4287 | 177 |
0.0011 | 8.4219 | 178 |
0.0005 | 8.3854 | 179 |
0.0003 | 8.3589 | 180 |
0.0003 | 8.3630 | 181 |
0.0002 | 8.3680 | 182 |
0.0003 | 8.3735 | 183 |
0.0003 | 8.3812 | 184 |
0.0003 | 8.3882 | 185 |
0.0003 | 8.3937 | 186 |
0.0002 | 8.3989 | 187 |
0.0003 | 8.4022 | 188 |
0.0003 | 8.4048 | 189 |
0.0003 | 8.4102 | 190 |
0.0004 | 8.4197 | 191 |
0.0003 | 8.4328 | 192 |
0.0004 | 8.4468 | 193 |
0.0002 | 8.4609 | 194 |
0.0011 | 8.4712 | 195 |
0.0003 | 8.4735 | 196 |
0.0002 | 8.4789 | 197 |
0.0007 | 8.4928 | 198 |
0.0002 | 8.5066 | 199 |
0.0003 | 8.5205 | 200 |
0.0003 | 8.5368 | 201 |
0.0003 | 8.5531 | 202 |
0.0002 | 8.5676 | 203 |
0.0002 | 8.5815 | 204 |
0.0003 | 8.5989 | 205 |
0.0003 | 8.6161 | 206 |
0.0001 | 8.6305 | 207 |
0.0003 | 8.6473 | 208 |
0.0003 | 8.6626 | 209 |
0.0003 | 8.6764 | 210 |
0.0002 | 8.6899 | 211 |
0.0002 | 8.7019 | 212 |
0.0002 | 8.7119 | 213 |
0.0002 | 8.7212 | 214 |
0.0002 | 8.7302 | 215 |
0.0004 | 8.7417 | 216 |
0.0002 | 8.7514 | 217 |
0.0002 | 8.7593 | 218 |
0.0003 | 8.7690 | 219 |
0.0002 | 8.7771 | 220 |
0.0002 | 8.7845 | 221 |
0.0001 | 8.7917 | 222 |
0.0002 | 8.7980 | 223 |
0.0002 | 8.8040 | 224 |
0.0003 | 8.8093 | 225 |
0.0003 | 8.8150 | 226 |
0.0002 | 8.8209 | 227 |
0.0003 | 8.8271 | 228 |
0.0002 | 8.8329 | 229 |
0.0002 | 8.8378 | 230 |
0.0002 | 8.8429 | 231 |
0.0003 | 8.8493 | 232 |
0.0003 | 8.8575 | 233 |
0.0004 | 8.8548 | 234 |
0.0003 | 8.8510 | 235 |
0.0001 | 8.8501 | 236 |
0.0003 | 8.8473 | 237 |
0.0003 | 8.8561 | 238 |
0.0003 | 8.8667 | 239 |
0.0002 | 8.8767 | 240 |
0.0001 | 8.8847 | 241 |
0.0002 | 8.8915 | 242 |
0.0002 | 8.8980 | 243 |
0.0002 | 8.9038 | 244 |
0.0002 | 8.9119 | 245 |
0.0002 | 8.9202 | 246 |
Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1