pi-Flow: Policy-Based Flow Models
Distilled 4-step and 8-step FLUX.1 models proposed in the paper:
pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation
Hansheng Chen1,
Kai Zhang2,
Hao Tan2,
Leonidas Guibas1,
Gordon Wetzstein1,
Sai Bi2
1Stanford University, 2Adobe Research
[arXiv] [Code] [pi-Qwen Demo🤗] [pi-FLUX Demo🤗]
Usage
Please first install the official code repository.
We provide diffusers pipelines for easy inference. The following code demonstrates how to sample images from the distilled FLUX models.
4-NFE GM-FLUX (GMFlow Policy)
Note: For the 8-NFE version, replace gmflux_k8_piid_4step
with gmflux_k8_piid_8step
and set num_inference_steps=8
.
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from lakonlab.pipelines.piflux_pipeline import PiFluxPipeline
pipe = PiFluxPipeline.from_pretrained(
'black-forest-labs/FLUX.1-dev',
torch_dtype=torch.bfloat16)
adapter_name = pipe.load_piflow_adapter( # you may later call `pipe.set_adapters([adapter_name, ...])` to combine other adapters (e.g., style LoRAs)
'Lakonik/pi-FLUX.1',
subfolder='gmflux_k8_piid_4step',
target_module_name='transformer')
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( # use fixed shift=3.2
pipe.scheduler.config, shift=3.2, use_dynamic_shifting=False)
pipe = pipe.to('cuda')
out = pipe(
prompt='A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the Sydney Opera House holding a sign on the chest that says "Welcome Friends"',
width=1360,
height=768,
num_inference_steps=4,
generator=torch.Generator().manual_seed(42),
).images[0]
out.save('gmflux_4nfe.png')
4-NFE DX-FLUX (DX Policy)
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from lakonlab.pipelines.piflux_pipeline import PiFluxPipeline
pipe = PiFluxPipeline.from_pretrained(
'black-forest-labs/FLUX.1-dev',
policy_type='DX',
policy_kwargs=dict(
segment_size=1 / 3.5, # 1 / (nfe - 1 + final_step_size_scale)
shift=3.2),
torch_dtype=torch.bfloat16)
adapter_name = pipe.load_piflow_adapter( # you may later call `pipe.set_adapters([adapter_name, ...])` to combine other adapters (e.g., style LoRAs)
'Lakonik/pi-FLUX.1',
subfolder='dxflux_n10_piid_4step',
target_module_name='transformer')
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( # use fixed shift=3.2
pipe.scheduler.config, shift=3.2, use_dynamic_shifting=False)
pipe = pipe.to('cuda')
out = pipe(
prompt='A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the Sydney Opera House holding a sign on the chest that says "Welcome Friends"',
width=1360,
height=768,
num_inference_steps=4,
generator=torch.Generator().manual_seed(42),
).images[0]
out.save('dxflux_4nfe.png')
Citation
@misc{piflow,
title={pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation},
author={Hansheng Chen and Kai Zhang and Hao Tan and Leonidas Guibas and Gordon Wetzstein and Sai Bi},
year={2025},
eprint={2510.14974},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2510.14974},
}
- Downloads last month
- -
Model tree for Lakonik/pi-FLUX.1
Base model
black-forest-labs/FLUX.1-dev