LucaReggiani/t5-small-nlpfinalproject2-xsum

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 3.1399
  • Validation Loss: 3.0183
  • Train Rouge1: 23.2180
  • Train Rouge2: 5.1740
  • Train Rougel: 18.3975
  • Train Rougelsum: 18.4246
  • Train Gen Len: 18.5
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.98, 'epsilon': 1e-06, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Rouge1 Train Rouge2 Train Rougel Train Rougelsum Train Gen Len Epoch
3.8670 3.3126 18.0994 2.9443 14.8574 14.8089 18.69 0
3.5043 3.1732 20.2677 3.9191 15.8137 15.8748 18.53 1
3.4010 3.1149 21.9985 4.4897 16.7720 16.8119 18.36 2
3.3235 3.0830 20.6948 3.9055 15.9707 15.9961 18.49 3
3.2700 3.0611 21.2726 3.8497 16.5193 16.5449 18.64 4
3.2309 3.0456 22.2643 4.5285 17.6124 17.6095 18.53 5
3.1842 3.0302 22.3951 4.7814 18.0792 18.0771 18.4 6
3.1399 3.0183 23.2180 5.1740 18.3975 18.4246 18.5 7

Framework versions

  • Transformers 4.26.1
  • TensorFlow 2.11.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support