ModernBERT-L-clinc-oos
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1974
- Accuracy: 0.97
- F1: 0.9696
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 4
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.006 | 0.6289 | 200 | 0.2079 | 0.9635 | 0.9632 |
| 0.0087 | 1.2579 | 400 | 0.2146 | 0.9655 | 0.9650 |
| 0.0094 | 1.8868 | 600 | 0.2036 | 0.9681 | 0.9675 |
| 0.0064 | 2.5157 | 800 | 0.2087 | 0.9690 | 0.9687 |
| 0.0006 | 3.1447 | 1000 | 0.1971 | 0.9697 | 0.9693 |
| 0.0003 | 3.7736 | 1200 | 0.1974 | 0.97 | 0.9696 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 3
Model tree for Marcus-KO/ModernBERT-L-clinc-oos
Base model
answerdotai/ModernBERT-large