yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8341
- Map: 0.572
- Map 50: 0.8556
- Map 75: 0.6387
- Map Small: -1.0
- Map Medium: 0.5995
- Map Large: 0.5779
- Mar 1: 0.4112
- Mar 10: 0.7057
- Mar 100: 0.7578
- Mar Small: -1.0
- Mar Medium: 0.7325
- Mar Large: 0.7609
- Map Banana: 0.4363
- Mar 100 Banana: 0.7325
- Map Orange: 0.6275
- Mar 100 Orange: 0.781
- Map Apple: 0.6522
- Mar 100 Apple: 0.76
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 1.5440 | 0.0387 | 0.0859 | 0.0348 | -1.0 | 0.1394 | 0.0336 | 0.149 | 0.2869 | 0.5454 | -1.0 | 0.485 | 0.5483 | 0.0331 | 0.5975 | 0.0514 | 0.4929 | 0.0315 | 0.5457 |
No log | 2.0 | 120 | 1.5123 | 0.0855 | 0.2047 | 0.0596 | -1.0 | 0.2024 | 0.0905 | 0.176 | 0.366 | 0.5231 | -1.0 | 0.43 | 0.5303 | 0.0686 | 0.575 | 0.0483 | 0.3143 | 0.1395 | 0.68 |
No log | 3.0 | 180 | 1.4236 | 0.0718 | 0.1411 | 0.0629 | -1.0 | 0.1677 | 0.0714 | 0.2189 | 0.4188 | 0.5707 | -1.0 | 0.6325 | 0.5636 | 0.0422 | 0.5925 | 0.0798 | 0.5738 | 0.0934 | 0.5457 |
No log | 4.0 | 240 | 1.2437 | 0.1361 | 0.2456 | 0.1491 | -1.0 | 0.3305 | 0.1522 | 0.2948 | 0.5091 | 0.6615 | -1.0 | 0.625 | 0.6675 | 0.0816 | 0.6175 | 0.1462 | 0.6786 | 0.1805 | 0.6886 |
No log | 5.0 | 300 | 1.1642 | 0.1941 | 0.3089 | 0.2199 | -1.0 | 0.3199 | 0.2035 | 0.3128 | 0.5666 | 0.6821 | -1.0 | 0.705 | 0.6824 | 0.0805 | 0.635 | 0.1943 | 0.6429 | 0.3076 | 0.7686 |
No log | 6.0 | 360 | 1.1856 | 0.3147 | 0.5352 | 0.3616 | -1.0 | 0.3609 | 0.3281 | 0.3224 | 0.5628 | 0.66 | -1.0 | 0.57 | 0.6692 | 0.1343 | 0.63 | 0.3586 | 0.6214 | 0.4513 | 0.7286 |
No log | 7.0 | 420 | 0.9729 | 0.3946 | 0.6053 | 0.4763 | -1.0 | 0.3824 | 0.4076 | 0.3595 | 0.6093 | 0.7112 | -1.0 | 0.6675 | 0.7153 | 0.2312 | 0.705 | 0.4634 | 0.7286 | 0.4894 | 0.7 |
No log | 8.0 | 480 | 1.0144 | 0.4255 | 0.7172 | 0.4726 | -1.0 | 0.4703 | 0.4381 | 0.362 | 0.6152 | 0.6965 | -1.0 | 0.6825 | 0.7014 | 0.2774 | 0.6475 | 0.4481 | 0.6905 | 0.5511 | 0.7514 |
1.1634 | 9.0 | 540 | 0.9774 | 0.48 | 0.7801 | 0.5204 | -1.0 | 0.515 | 0.5061 | 0.3615 | 0.641 | 0.7079 | -1.0 | 0.6325 | 0.7183 | 0.32 | 0.67 | 0.5217 | 0.731 | 0.5984 | 0.7229 |
1.1634 | 10.0 | 600 | 1.0095 | 0.4681 | 0.7863 | 0.4974 | -1.0 | 0.5686 | 0.4764 | 0.3608 | 0.6471 | 0.7063 | -1.0 | 0.645 | 0.7137 | 0.3044 | 0.665 | 0.5478 | 0.731 | 0.5521 | 0.7229 |
1.1634 | 11.0 | 660 | 0.9365 | 0.4856 | 0.785 | 0.5537 | -1.0 | 0.5393 | 0.4932 | 0.3753 | 0.6683 | 0.7209 | -1.0 | 0.71 | 0.7258 | 0.3324 | 0.6675 | 0.5215 | 0.7667 | 0.603 | 0.7286 |
1.1634 | 12.0 | 720 | 0.9318 | 0.5065 | 0.7759 | 0.5698 | -1.0 | 0.4812 | 0.5166 | 0.3932 | 0.6754 | 0.7317 | -1.0 | 0.7025 | 0.7373 | 0.3646 | 0.685 | 0.4942 | 0.7357 | 0.6606 | 0.7743 |
1.1634 | 13.0 | 780 | 0.8694 | 0.5439 | 0.8237 | 0.6188 | -1.0 | 0.5939 | 0.5536 | 0.3957 | 0.6971 | 0.7484 | -1.0 | 0.755 | 0.7513 | 0.4012 | 0.7075 | 0.5879 | 0.7833 | 0.6427 | 0.7543 |
1.1634 | 14.0 | 840 | 0.8888 | 0.537 | 0.8231 | 0.5881 | -1.0 | 0.471 | 0.5495 | 0.3965 | 0.6842 | 0.7273 | -1.0 | 0.7275 | 0.7298 | 0.4131 | 0.6875 | 0.557 | 0.7571 | 0.6408 | 0.7371 |
1.1634 | 15.0 | 900 | 0.8759 | 0.5486 | 0.8215 | 0.6192 | -1.0 | 0.4901 | 0.5642 | 0.4162 | 0.6849 | 0.7504 | -1.0 | 0.7175 | 0.7571 | 0.4077 | 0.6975 | 0.5634 | 0.7738 | 0.6749 | 0.78 |
1.1634 | 16.0 | 960 | 0.8709 | 0.5503 | 0.856 | 0.6079 | -1.0 | 0.6038 | 0.5588 | 0.3988 | 0.6788 | 0.7389 | -1.0 | 0.6925 | 0.7459 | 0.4131 | 0.6925 | 0.5928 | 0.7643 | 0.645 | 0.76 |
0.739 | 17.0 | 1020 | 0.9051 | 0.5407 | 0.8343 | 0.6075 | -1.0 | 0.6395 | 0.544 | 0.3903 | 0.6884 | 0.7336 | -1.0 | 0.7475 | 0.7349 | 0.3945 | 0.685 | 0.5774 | 0.7643 | 0.6501 | 0.7514 |
0.739 | 18.0 | 1080 | 0.8992 | 0.5441 | 0.84 | 0.5738 | -1.0 | 0.6025 | 0.5492 | 0.4014 | 0.684 | 0.7301 | -1.0 | 0.705 | 0.7349 | 0.4046 | 0.685 | 0.5938 | 0.7738 | 0.6341 | 0.7314 |
0.739 | 19.0 | 1140 | 0.8874 | 0.5597 | 0.8492 | 0.6127 | -1.0 | 0.637 | 0.5648 | 0.4083 | 0.6959 | 0.7476 | -1.0 | 0.7375 | 0.7512 | 0.4149 | 0.7 | 0.6086 | 0.7857 | 0.6555 | 0.7571 |
0.739 | 20.0 | 1200 | 0.8511 | 0.5739 | 0.8539 | 0.6164 | -1.0 | 0.6501 | 0.5792 | 0.4119 | 0.7027 | 0.7512 | -1.0 | 0.765 | 0.7526 | 0.4278 | 0.685 | 0.598 | 0.7857 | 0.6958 | 0.7829 |
0.739 | 21.0 | 1260 | 0.8410 | 0.5585 | 0.8335 | 0.602 | -1.0 | 0.617 | 0.562 | 0.4049 | 0.6914 | 0.7379 | -1.0 | 0.7225 | 0.7408 | 0.4426 | 0.695 | 0.598 | 0.7786 | 0.635 | 0.74 |
0.739 | 22.0 | 1320 | 0.8601 | 0.5661 | 0.8578 | 0.6273 | -1.0 | 0.59 | 0.5698 | 0.402 | 0.6915 | 0.7349 | -1.0 | 0.69 | 0.7399 | 0.4617 | 0.7075 | 0.5998 | 0.7714 | 0.6367 | 0.7257 |
0.739 | 23.0 | 1380 | 0.8342 | 0.5768 | 0.8697 | 0.6525 | -1.0 | 0.5742 | 0.5857 | 0.4092 | 0.6926 | 0.7453 | -1.0 | 0.7125 | 0.7495 | 0.4508 | 0.715 | 0.6183 | 0.781 | 0.6612 | 0.74 |
0.739 | 24.0 | 1440 | 0.8332 | 0.5754 | 0.8542 | 0.6483 | -1.0 | 0.5912 | 0.5811 | 0.4106 | 0.6929 | 0.7493 | -1.0 | 0.735 | 0.7519 | 0.4558 | 0.7175 | 0.6252 | 0.7905 | 0.6453 | 0.74 |
0.5743 | 25.0 | 1500 | 0.8418 | 0.5749 | 0.8527 | 0.6509 | -1.0 | 0.589 | 0.5814 | 0.4114 | 0.6978 | 0.7517 | -1.0 | 0.725 | 0.7552 | 0.4595 | 0.7275 | 0.6192 | 0.7905 | 0.6461 | 0.7371 |
0.5743 | 26.0 | 1560 | 0.8364 | 0.573 | 0.854 | 0.6416 | -1.0 | 0.6126 | 0.5773 | 0.4096 | 0.6985 | 0.7505 | -1.0 | 0.745 | 0.752 | 0.4485 | 0.7225 | 0.6224 | 0.7833 | 0.6482 | 0.7457 |
0.5743 | 27.0 | 1620 | 0.8337 | 0.574 | 0.8561 | 0.6405 | -1.0 | 0.6115 | 0.579 | 0.4104 | 0.6971 | 0.7515 | -1.0 | 0.7325 | 0.754 | 0.4423 | 0.7225 | 0.6291 | 0.7833 | 0.6504 | 0.7486 |
0.5743 | 28.0 | 1680 | 0.8323 | 0.5702 | 0.8556 | 0.6335 | -1.0 | 0.6109 | 0.5749 | 0.4104 | 0.704 | 0.7544 | -1.0 | 0.7225 | 0.7583 | 0.4356 | 0.7275 | 0.6258 | 0.7786 | 0.6491 | 0.7571 |
0.5743 | 29.0 | 1740 | 0.8336 | 0.5719 | 0.8555 | 0.6387 | -1.0 | 0.5994 | 0.5779 | 0.4112 | 0.7057 | 0.7578 | -1.0 | 0.7325 | 0.7609 | 0.4356 | 0.7325 | 0.6275 | 0.781 | 0.6526 | 0.76 |
0.5743 | 30.0 | 1800 | 0.8341 | 0.572 | 0.8556 | 0.6387 | -1.0 | 0.5995 | 0.5779 | 0.4112 | 0.7057 | 0.7578 | -1.0 | 0.7325 | 0.7609 | 0.4363 | 0.7325 | 0.6275 | 0.781 | 0.6522 | 0.76 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MarioGL/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny