yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8341
  • Map: 0.572
  • Map 50: 0.8556
  • Map 75: 0.6387
  • Map Small: -1.0
  • Map Medium: 0.5995
  • Map Large: 0.5779
  • Mar 1: 0.4112
  • Mar 10: 0.7057
  • Mar 100: 0.7578
  • Mar Small: -1.0
  • Mar Medium: 0.7325
  • Mar Large: 0.7609
  • Map Banana: 0.4363
  • Mar 100 Banana: 0.7325
  • Map Orange: 0.6275
  • Mar 100 Orange: 0.781
  • Map Apple: 0.6522
  • Mar 100 Apple: 0.76

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.5440 0.0387 0.0859 0.0348 -1.0 0.1394 0.0336 0.149 0.2869 0.5454 -1.0 0.485 0.5483 0.0331 0.5975 0.0514 0.4929 0.0315 0.5457
No log 2.0 120 1.5123 0.0855 0.2047 0.0596 -1.0 0.2024 0.0905 0.176 0.366 0.5231 -1.0 0.43 0.5303 0.0686 0.575 0.0483 0.3143 0.1395 0.68
No log 3.0 180 1.4236 0.0718 0.1411 0.0629 -1.0 0.1677 0.0714 0.2189 0.4188 0.5707 -1.0 0.6325 0.5636 0.0422 0.5925 0.0798 0.5738 0.0934 0.5457
No log 4.0 240 1.2437 0.1361 0.2456 0.1491 -1.0 0.3305 0.1522 0.2948 0.5091 0.6615 -1.0 0.625 0.6675 0.0816 0.6175 0.1462 0.6786 0.1805 0.6886
No log 5.0 300 1.1642 0.1941 0.3089 0.2199 -1.0 0.3199 0.2035 0.3128 0.5666 0.6821 -1.0 0.705 0.6824 0.0805 0.635 0.1943 0.6429 0.3076 0.7686
No log 6.0 360 1.1856 0.3147 0.5352 0.3616 -1.0 0.3609 0.3281 0.3224 0.5628 0.66 -1.0 0.57 0.6692 0.1343 0.63 0.3586 0.6214 0.4513 0.7286
No log 7.0 420 0.9729 0.3946 0.6053 0.4763 -1.0 0.3824 0.4076 0.3595 0.6093 0.7112 -1.0 0.6675 0.7153 0.2312 0.705 0.4634 0.7286 0.4894 0.7
No log 8.0 480 1.0144 0.4255 0.7172 0.4726 -1.0 0.4703 0.4381 0.362 0.6152 0.6965 -1.0 0.6825 0.7014 0.2774 0.6475 0.4481 0.6905 0.5511 0.7514
1.1634 9.0 540 0.9774 0.48 0.7801 0.5204 -1.0 0.515 0.5061 0.3615 0.641 0.7079 -1.0 0.6325 0.7183 0.32 0.67 0.5217 0.731 0.5984 0.7229
1.1634 10.0 600 1.0095 0.4681 0.7863 0.4974 -1.0 0.5686 0.4764 0.3608 0.6471 0.7063 -1.0 0.645 0.7137 0.3044 0.665 0.5478 0.731 0.5521 0.7229
1.1634 11.0 660 0.9365 0.4856 0.785 0.5537 -1.0 0.5393 0.4932 0.3753 0.6683 0.7209 -1.0 0.71 0.7258 0.3324 0.6675 0.5215 0.7667 0.603 0.7286
1.1634 12.0 720 0.9318 0.5065 0.7759 0.5698 -1.0 0.4812 0.5166 0.3932 0.6754 0.7317 -1.0 0.7025 0.7373 0.3646 0.685 0.4942 0.7357 0.6606 0.7743
1.1634 13.0 780 0.8694 0.5439 0.8237 0.6188 -1.0 0.5939 0.5536 0.3957 0.6971 0.7484 -1.0 0.755 0.7513 0.4012 0.7075 0.5879 0.7833 0.6427 0.7543
1.1634 14.0 840 0.8888 0.537 0.8231 0.5881 -1.0 0.471 0.5495 0.3965 0.6842 0.7273 -1.0 0.7275 0.7298 0.4131 0.6875 0.557 0.7571 0.6408 0.7371
1.1634 15.0 900 0.8759 0.5486 0.8215 0.6192 -1.0 0.4901 0.5642 0.4162 0.6849 0.7504 -1.0 0.7175 0.7571 0.4077 0.6975 0.5634 0.7738 0.6749 0.78
1.1634 16.0 960 0.8709 0.5503 0.856 0.6079 -1.0 0.6038 0.5588 0.3988 0.6788 0.7389 -1.0 0.6925 0.7459 0.4131 0.6925 0.5928 0.7643 0.645 0.76
0.739 17.0 1020 0.9051 0.5407 0.8343 0.6075 -1.0 0.6395 0.544 0.3903 0.6884 0.7336 -1.0 0.7475 0.7349 0.3945 0.685 0.5774 0.7643 0.6501 0.7514
0.739 18.0 1080 0.8992 0.5441 0.84 0.5738 -1.0 0.6025 0.5492 0.4014 0.684 0.7301 -1.0 0.705 0.7349 0.4046 0.685 0.5938 0.7738 0.6341 0.7314
0.739 19.0 1140 0.8874 0.5597 0.8492 0.6127 -1.0 0.637 0.5648 0.4083 0.6959 0.7476 -1.0 0.7375 0.7512 0.4149 0.7 0.6086 0.7857 0.6555 0.7571
0.739 20.0 1200 0.8511 0.5739 0.8539 0.6164 -1.0 0.6501 0.5792 0.4119 0.7027 0.7512 -1.0 0.765 0.7526 0.4278 0.685 0.598 0.7857 0.6958 0.7829
0.739 21.0 1260 0.8410 0.5585 0.8335 0.602 -1.0 0.617 0.562 0.4049 0.6914 0.7379 -1.0 0.7225 0.7408 0.4426 0.695 0.598 0.7786 0.635 0.74
0.739 22.0 1320 0.8601 0.5661 0.8578 0.6273 -1.0 0.59 0.5698 0.402 0.6915 0.7349 -1.0 0.69 0.7399 0.4617 0.7075 0.5998 0.7714 0.6367 0.7257
0.739 23.0 1380 0.8342 0.5768 0.8697 0.6525 -1.0 0.5742 0.5857 0.4092 0.6926 0.7453 -1.0 0.7125 0.7495 0.4508 0.715 0.6183 0.781 0.6612 0.74
0.739 24.0 1440 0.8332 0.5754 0.8542 0.6483 -1.0 0.5912 0.5811 0.4106 0.6929 0.7493 -1.0 0.735 0.7519 0.4558 0.7175 0.6252 0.7905 0.6453 0.74
0.5743 25.0 1500 0.8418 0.5749 0.8527 0.6509 -1.0 0.589 0.5814 0.4114 0.6978 0.7517 -1.0 0.725 0.7552 0.4595 0.7275 0.6192 0.7905 0.6461 0.7371
0.5743 26.0 1560 0.8364 0.573 0.854 0.6416 -1.0 0.6126 0.5773 0.4096 0.6985 0.7505 -1.0 0.745 0.752 0.4485 0.7225 0.6224 0.7833 0.6482 0.7457
0.5743 27.0 1620 0.8337 0.574 0.8561 0.6405 -1.0 0.6115 0.579 0.4104 0.6971 0.7515 -1.0 0.7325 0.754 0.4423 0.7225 0.6291 0.7833 0.6504 0.7486
0.5743 28.0 1680 0.8323 0.5702 0.8556 0.6335 -1.0 0.6109 0.5749 0.4104 0.704 0.7544 -1.0 0.7225 0.7583 0.4356 0.7275 0.6258 0.7786 0.6491 0.7571
0.5743 29.0 1740 0.8336 0.5719 0.8555 0.6387 -1.0 0.5994 0.5779 0.4112 0.7057 0.7578 -1.0 0.7325 0.7609 0.4356 0.7325 0.6275 0.781 0.6526 0.76
0.5743 30.0 1800 0.8341 0.572 0.8556 0.6387 -1.0 0.5995 0.5779 0.4112 0.7057 0.7578 -1.0 0.7325 0.7609 0.4363 0.7325 0.6275 0.781 0.6522 0.76

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MarioGL/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(54)
this model