SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mercity/memory-retrieval-minilm-l6-v2")
# Run inference
sentences = [
'Provide the amortization schedule difference for CC1 under both prioritization schemas.',
"Mark's primary long-term goal is to start his own small business within the next four years, requiring significant capital savings to begin operations.",
"Last spring, Dr. Vasquez received high praise from the Dean for successfully transitioning her entire curriculum to align with a newly adopted, highly structured 'Systems Thinking Framework' mandated by the university board.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.9104, -0.3007],
# [ 0.9104, 1.0000, -0.2945],
# [-0.3007, -0.2945, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 370,023 training samples
- Columns:
sentence_0,sentence_1, andsentence_2 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 11 tokens
- mean: 31.57 tokens
- max: 76 tokens
- min: 17 tokens
- mean: 36.18 tokens
- max: 64 tokens
- min: 13 tokens
- mean: 32.21 tokens
- max: 154 tokens
- Samples:
sentence_0 sentence_1 sentence_2 Yoga by the sea for Nina's soul? Add scenic drives that whisper sweet nothings.Nina developed a strong, vocal aversion to driving manual transmission cars after a stressful rental experience in Tuscany in 2018.Sofia recently shared that her grandmother, who is a major influencer in the family, is recovering from a minor surgery and requires quiet, low-stress environments for the next few months.Targeting analysis of 200 sites to sway city green space policies; realistic under these limits?Dr. Patel has a strong, established working relationship with the City Planning Department head, who is personally invested in seeing the pollinator data incorporated into the 2026 municipal budget review.Alex reviewed the seed funding agreement which stipulated that 10% ($50,000) of the capital must be reserved solely for executive bonuses upon Series A closing.Gluten-free options avoiding cross-contamination in our small kitchen? I truly value this.Lisa has a very close relationship with her neighbor, Sarah, who is a professional chef specializing in South American cuisine and often offers to help prep on Sundays.Alex's agent advised varying sentence structure with occasional future tense projections during character betrayals to heighten emotional stakes in the plot. - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0432 | 500 | 0.3372 |
| 0.0865 | 1000 | 0.1651 |
| 0.1297 | 1500 | 0.1505 |
| 0.1730 | 2000 | 0.1367 |
| 0.2162 | 2500 | 0.128 |
| 0.2594 | 3000 | 0.1213 |
| 0.3027 | 3500 | 0.1167 |
| 0.3459 | 4000 | 0.1087 |
| 0.3891 | 4500 | 0.1017 |
| 0.4324 | 5000 | 0.1019 |
| 0.4756 | 5500 | 0.096 |
| 0.5189 | 6000 | 0.0963 |
| 0.5621 | 6500 | 0.0883 |
| 0.6053 | 7000 | 0.0879 |
| 0.6486 | 7500 | 0.0865 |
| 0.6918 | 8000 | 0.0822 |
| 0.7350 | 8500 | 0.0815 |
| 0.7783 | 9000 | 0.0784 |
| 0.8215 | 9500 | 0.0754 |
| 0.8648 | 10000 | 0.0767 |
| 0.9080 | 10500 | 0.0732 |
| 0.9512 | 11000 | 0.0713 |
| 0.9945 | 11500 | 0.0677 |
| 1.0 | 11564 | - |
| 1.0377 | 12000 | 0.0611 |
| 1.0809 | 12500 | 0.0572 |
| 1.1242 | 13000 | 0.0596 |
| 1.1674 | 13500 | 0.0576 |
| 1.2107 | 14000 | 0.0562 |
| 1.2539 | 14500 | 0.0544 |
| 1.2971 | 15000 | 0.0543 |
| 1.3404 | 15500 | 0.0544 |
| 1.3836 | 16000 | 0.0533 |
| 1.4268 | 16500 | 0.0515 |
| 1.4701 | 17000 | 0.0501 |
| 1.5133 | 17500 | 0.0515 |
| 1.5566 | 18000 | 0.0494 |
| 1.5998 | 18500 | 0.0495 |
| 1.6430 | 19000 | 0.0477 |
| 1.6863 | 19500 | 0.0471 |
| 1.7295 | 20000 | 0.0478 |
| 1.7727 | 20500 | 0.0453 |
| 1.8160 | 21000 | 0.0447 |
| 1.8592 | 21500 | 0.0463 |
| 1.9025 | 22000 | 0.0462 |
| 1.9457 | 22500 | 0.0445 |
| 1.9889 | 23000 | 0.0436 |
| 2.0 | 23128 | - |
| 2.0322 | 23500 | 0.0376 |
| 2.0754 | 24000 | 0.0377 |
| 2.1186 | 24500 | 0.0364 |
| 2.1619 | 25000 | 0.0381 |
| 2.2051 | 25500 | 0.0382 |
| 2.2484 | 26000 | 0.0359 |
| 2.2916 | 26500 | 0.036 |
| 2.3348 | 27000 | 0.0365 |
| 2.3781 | 27500 | 0.0362 |
| 2.4213 | 28000 | 0.036 |
| 2.4645 | 28500 | 0.0359 |
| 2.5078 | 29000 | 0.0364 |
| 2.5510 | 29500 | 0.0355 |
| 2.5943 | 30000 | 0.0354 |
| 2.6375 | 30500 | 0.0348 |
| 2.6807 | 31000 | 0.0362 |
| 2.7240 | 31500 | 0.0345 |
| 2.7672 | 32000 | 0.0351 |
| 2.8104 | 32500 | 0.0345 |
| 2.8537 | 33000 | 0.0351 |
| 2.8969 | 33500 | 0.0339 |
| 2.9402 | 34000 | 0.0354 |
| 2.9834 | 34500 | 0.0356 |
| 3.0 | 34692 | - |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.11.0
- Datasets: 4.4.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 14
Model tree for Mercity/memory-retrieval-minilm-l6-v2
Base model
sentence-transformers/all-MiniLM-L6-v2