support torch 2.8
#3
by
iamwyldecat
- opened
This view is limited to 50 files because it contains too many changes.Β
See the raw diff here.
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/_ops.py +0 -9
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so +0 -3
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/__init__.py +0 -5
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/_ops.py +0 -9
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so +0 -3
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/muon.py +0 -494
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/__init__.py +0 -5
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/_ops.py +0 -9
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so +0 -3
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/muon.py +0 -494
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/__init__.py +0 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc +0 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/{_optimizer_02ac540_dirty.abi3.so β _optimizer_1f13dae_dirty.abi3.so} +1 -1
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/muon.py +0 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/__init__.py +0 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc +0 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/{_optimizer_02ac540_dirty.abi3.so β _optimizer_1f13dae_dirty.abi3.so} +1 -1
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/muon.py +0 -0
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/__init__.py +0 -0
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc +0 -0
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/{_optimizer_02ac540_dirty.abi3.so β _optimizer_1f13dae_dirty.abi3.so} +1 -1
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/muon.py +0 -0
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__init__.py +0 -0
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/__init__.cpython-312.pyc +0 -0
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/muon.cpython-312.pyc +0 -0
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc +0 -0
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so +0 -3
- build/{torch26-cxx11-cu126-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so β torch27-cxx11-rocm63-x86_64-linux/optimizer/_optimizer_1f13dae_dirty.abi3.so} +2 -2
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/muon.py +0 -0
- build/{torch26-cxx11-cu118-x86_64-linux β torch28-cxx11-cu126-x86_64-linux}/optimizer/__init__.py +0 -0
- build/torch28-cxx11-cu126-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu126-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc +0 -0
- build/{torch26-cxx11-cu118-x86_64-linux β torch28-cxx11-cu126-x86_64-linux}/optimizer/_ops.py +3 -3
- build/{torch26-cxx11-cu118-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so β torch28-cxx11-cu126-x86_64-linux/optimizer/_optimizer_1f13dae_dirty.abi3.so} +2 -2
- build/{torch26-cxx11-cu118-x86_64-linux β torch28-cxx11-cu126-x86_64-linux}/optimizer/muon.py +0 -0
- build/{torch26-cxx11-cu124-x86_64-linux β torch28-cxx11-cu128-x86_64-linux}/optimizer/__init__.py +0 -0
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc +0 -0
- build/{torch26-cxx11-cu126-x86_64-linux β torch28-cxx11-cu128-x86_64-linux}/optimizer/_ops.py +3 -3
- build/{torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so β torch28-cxx11-cu128-x86_64-linux/optimizer/_optimizer_1f13dae_dirty.abi3.so} +2 -2
- build/{torch26-cxx11-cu124-x86_64-linux β torch28-cxx11-cu128-x86_64-linux}/optimizer/muon.py +0 -0
- build/{torch26-cxx11-cu126-x86_64-linux β torch28-cxx11-cu129-x86_64-linux}/optimizer/__init__.py +0 -0
build/torch26-cxx98-cu118-x86_64-linux/optimizer/_ops.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from . import _optimizer_02ac540_dirty
|
3 |
-
ops = torch.ops._optimizer_02ac540_dirty
|
4 |
-
|
5 |
-
def add_op_namespace_prefix(op_name: str):
|
6 |
-
"""
|
7 |
-
Prefix op by namespace.
|
8 |
-
"""
|
9 |
-
return f"_optimizer_02ac540_dirty::{op_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu118-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e09882858886be06e8ac48d184b320c57624d9c85165ce8b56640b022838e44
|
3 |
-
size 1787192
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .muon import Muon
|
2 |
-
|
3 |
-
__all__ = [
|
4 |
-
"Muon",
|
5 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/_ops.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from . import _optimizer_02ac540_dirty
|
3 |
-
ops = torch.ops._optimizer_02ac540_dirty
|
4 |
-
|
5 |
-
def add_op_namespace_prefix(op_name: str):
|
6 |
-
"""
|
7 |
-
Prefix op by namespace.
|
8 |
-
"""
|
9 |
-
return f"_optimizer_02ac540_dirty::{op_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6f63b2cd2c67b44f5e54837a0a4f26d94d3e6e8bfa4964bd99fc7e38494e2d52
|
3 |
-
size 1824184
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/muon.py
DELETED
@@ -1,494 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.distributed as dist
|
6 |
-
from torch.distributed._tensor import DTensor, Replicate
|
7 |
-
|
8 |
-
|
9 |
-
# This code snippet is a modified version adapted from the following GitHub repositories:
|
10 |
-
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
11 |
-
@torch.no_grad()
|
12 |
-
def _zeropower_via_newtonschulz5(G, steps):
|
13 |
-
"""
|
14 |
-
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
15 |
-
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
16 |
-
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
17 |
-
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
18 |
-
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
19 |
-
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
20 |
-
performance at all relative to UV^T, where USV^T = G is the SVD.
|
21 |
-
"""
|
22 |
-
assert len(G.shape) == 2
|
23 |
-
a, b, c = (3.4445, -4.7750, 2.0315)
|
24 |
-
X = G # no manual typecast
|
25 |
-
if G.size(0) > G.size(1):
|
26 |
-
X = X.T
|
27 |
-
# Ensure spectral norm is at most 1
|
28 |
-
X = X / (X.norm() + 1e-7)
|
29 |
-
X = X.bfloat16()
|
30 |
-
# Perform the NS iterations
|
31 |
-
for _ in range(steps):
|
32 |
-
A = X @ X.T
|
33 |
-
# B = (
|
34 |
-
# b * A + c * A @ A
|
35 |
-
# )
|
36 |
-
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
37 |
-
# X = a * X + B @ X
|
38 |
-
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
39 |
-
|
40 |
-
if G.size(0) > G.size(1):
|
41 |
-
X = X.T
|
42 |
-
return X.to(G.dtype)
|
43 |
-
|
44 |
-
|
45 |
-
@dataclass
|
46 |
-
class _muon_state:
|
47 |
-
# TODO: use Optional
|
48 |
-
worker_rank: int | None = None
|
49 |
-
gathered_grad: torch.Tensor | None = None
|
50 |
-
computed_u: torch.Tensor | None = None
|
51 |
-
gather_event: torch.cuda.Event | None = None
|
52 |
-
compute_event: torch.cuda.Event | None = None
|
53 |
-
|
54 |
-
|
55 |
-
@torch.no_grad()
|
56 |
-
def _gather(p, state, rank, comm_stream, none_grad):
|
57 |
-
g = p.grad
|
58 |
-
mesh = g.device_mesh
|
59 |
-
|
60 |
-
if rank == state.worker_rank:
|
61 |
-
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
62 |
-
else:
|
63 |
-
gather_list = None
|
64 |
-
|
65 |
-
with torch.cuda.stream(comm_stream):
|
66 |
-
torch.distributed.gather(
|
67 |
-
g.to_local(),
|
68 |
-
dst=state.worker_rank,
|
69 |
-
gather_list=gather_list,
|
70 |
-
group=mesh.get_group(),
|
71 |
-
)
|
72 |
-
if rank == state.worker_rank:
|
73 |
-
if state.gathered_grad is not None:
|
74 |
-
raise RuntimeError(
|
75 |
-
"Gather event already exists, which should not happen."
|
76 |
-
)
|
77 |
-
state.gathered_grad = torch.cat(gather_list, dim=0)
|
78 |
-
state.gather_event = torch.cuda.Event()
|
79 |
-
state.gather_event.record()
|
80 |
-
else:
|
81 |
-
state.gathered_grad = None
|
82 |
-
state.gather_event = None
|
83 |
-
if none_grad:
|
84 |
-
p.grad = None
|
85 |
-
|
86 |
-
|
87 |
-
@torch.no_grad()
|
88 |
-
def _compute_u(state, steps, rank, compute_stream):
|
89 |
-
with torch.cuda.stream(compute_stream):
|
90 |
-
if rank == state.worker_rank:
|
91 |
-
if state.gather_event is None:
|
92 |
-
raise RuntimeError("Gather event must be set before compute.")
|
93 |
-
compute_stream.wait_event(state.gather_event)
|
94 |
-
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
95 |
-
state.computed_u = u
|
96 |
-
state.compute_event = torch.cuda.Event()
|
97 |
-
state.compute_event.record()
|
98 |
-
# Clear the gathered gradient to free memory
|
99 |
-
state.gathered_grad = None
|
100 |
-
else:
|
101 |
-
state.computed_u = None
|
102 |
-
state.compute_event = None
|
103 |
-
|
104 |
-
|
105 |
-
@torch.no_grad()
|
106 |
-
def _scatter(p, state, lr, weight_decay, rank, comm_stream):
|
107 |
-
u = state.computed_u
|
108 |
-
mesh = p.device_mesh
|
109 |
-
|
110 |
-
with torch.cuda.stream(comm_stream):
|
111 |
-
if rank == state.worker_rank:
|
112 |
-
if state.compute_event is None:
|
113 |
-
raise RuntimeError("Compute event must be set before scatter.")
|
114 |
-
comm_stream.wait_event(state.compute_event)
|
115 |
-
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
116 |
-
else:
|
117 |
-
scatter_list = None
|
118 |
-
|
119 |
-
u = torch.empty_like(p.to_local())
|
120 |
-
torch.distributed.scatter(
|
121 |
-
u,
|
122 |
-
scatter_list=scatter_list,
|
123 |
-
src=state.worker_rank,
|
124 |
-
group=mesh.get_group(),
|
125 |
-
)
|
126 |
-
if rank == state.worker_rank:
|
127 |
-
# Clear u to free memory
|
128 |
-
state.computed_u = None
|
129 |
-
u = DTensor.from_local(
|
130 |
-
u,
|
131 |
-
placements=p.placements,
|
132 |
-
device_mesh=mesh,
|
133 |
-
)
|
134 |
-
p.data.mul_(1 - lr * weight_decay)
|
135 |
-
p.data.add_(u, alpha=-lr)
|
136 |
-
|
137 |
-
|
138 |
-
def default_is_muon(x, name):
|
139 |
-
return x.ndim >= 2 and "embed_tokens" not in name and "lm_head" not in name
|
140 |
-
|
141 |
-
|
142 |
-
class Muon(torch.optim.Optimizer):
|
143 |
-
"""
|
144 |
-
Muon - MomentUm Orthogonalized by Newton-schulz
|
145 |
-
|
146 |
-
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
147 |
-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
148 |
-
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
149 |
-
the advantage that it can be stably run in bfloat16 on the GPU.
|
150 |
-
|
151 |
-
Some warnings:
|
152 |
-
- We believe this optimizer is unlikely to work well for training with small batch size.
|
153 |
-
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
154 |
-
|
155 |
-
Arguments:
|
156 |
-
muon_params: The parameters to be optimized by Muon.
|
157 |
-
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
158 |
-
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
159 |
-
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
160 |
-
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
161 |
-
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
162 |
-
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
163 |
-
adamw_lr: The learning rate for the internal AdamW.
|
164 |
-
adamw_betas: The betas for the internal AdamW.
|
165 |
-
adamw_eps: The epsilon for the internal AdamW.
|
166 |
-
adamw_weight_decay: The weight decay for the internal AdamW.
|
167 |
-
"""
|
168 |
-
|
169 |
-
def __init__(
|
170 |
-
self,
|
171 |
-
model,
|
172 |
-
is_muon_func=default_is_muon,
|
173 |
-
lr=1e-3,
|
174 |
-
momentum=0.95,
|
175 |
-
nesterov=True,
|
176 |
-
ns_steps=5,
|
177 |
-
weight_decay=0.1,
|
178 |
-
adamw_betas=(0.9, 0.95),
|
179 |
-
adamw_eps=1e-8,
|
180 |
-
none_grad=True,
|
181 |
-
debug=False,
|
182 |
-
):
|
183 |
-
defaults = dict(
|
184 |
-
lr=lr,
|
185 |
-
weight_decay=weight_decay,
|
186 |
-
momentum=momentum,
|
187 |
-
nesterov=nesterov,
|
188 |
-
ns_steps=ns_steps,
|
189 |
-
adamw_betas=adamw_betas,
|
190 |
-
adamw_eps=adamw_eps,
|
191 |
-
none_grad=none_grad,
|
192 |
-
)
|
193 |
-
|
194 |
-
super().__init__(model.parameters(), defaults)
|
195 |
-
self.is_muon_func = is_muon_func
|
196 |
-
self.model = model
|
197 |
-
|
198 |
-
if dist.is_initialized():
|
199 |
-
self.rank = dist.get_rank()
|
200 |
-
else:
|
201 |
-
self.rank = None
|
202 |
-
|
203 |
-
self.comm_stream = torch.cuda.Stream()
|
204 |
-
self.compute_stream = torch.cuda.Stream()
|
205 |
-
self.debug = debug
|
206 |
-
|
207 |
-
def __setstate__(self, state):
|
208 |
-
# Sort parameters into those for which we will use Muon, and those for which we will not
|
209 |
-
super().__setstate__(state)
|
210 |
-
self._init_state()
|
211 |
-
|
212 |
-
def _init_state(self):
|
213 |
-
for name, p in self.model.named_parameters():
|
214 |
-
if self.is_muon_func(p, name):
|
215 |
-
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
216 |
-
assert p.ndim == 2, p.ndim
|
217 |
-
self.state[p]["use_muon"] = True
|
218 |
-
else:
|
219 |
-
# Do not use Muon for parameters in adamw_params
|
220 |
-
self.state[p]["use_muon"] = False
|
221 |
-
|
222 |
-
def _calc_flops(self, G, steps):
|
223 |
-
assert len(G.shape) == 2
|
224 |
-
M, N = G.shape
|
225 |
-
if M > N:
|
226 |
-
M, N = N, M
|
227 |
-
|
228 |
-
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
229 |
-
|
230 |
-
def adjust_lr_for_muon(self, lr, param_shape):
|
231 |
-
A, B = param_shape[:2]
|
232 |
-
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
233 |
-
# as describted in the paper
|
234 |
-
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
235 |
-
adjusted_lr = lr * adjusted_ratio
|
236 |
-
return adjusted_lr
|
237 |
-
|
238 |
-
def init_state_and_assign_params(self, params, group):
|
239 |
-
param_to_state = {}
|
240 |
-
param_to_flops = {}
|
241 |
-
|
242 |
-
total_flops = 0
|
243 |
-
for p in params:
|
244 |
-
g = p.grad
|
245 |
-
if g is None:
|
246 |
-
continue
|
247 |
-
assert g.ndim == 2, "Muon only supports 2D parameters."
|
248 |
-
|
249 |
-
flops = self._calc_flops(g, group["ns_steps"])
|
250 |
-
param_to_flops[id(p)] = flops
|
251 |
-
total_flops += flops
|
252 |
-
|
253 |
-
if self.debug:
|
254 |
-
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
255 |
-
|
256 |
-
ordered_params = sorted(
|
257 |
-
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
258 |
-
)
|
259 |
-
|
260 |
-
round_robin = 0
|
261 |
-
mesh = None
|
262 |
-
for p in ordered_params:
|
263 |
-
if mesh is None:
|
264 |
-
mesh = p.device_mesh
|
265 |
-
if mesh.ndim != 1:
|
266 |
-
raise NotImplementedError(
|
267 |
-
"Muon requires a 1D mesh for distributed training yet."
|
268 |
-
)
|
269 |
-
elif mesh != p.device_mesh:
|
270 |
-
raise ValueError("All parameters must be on the same mesh.")
|
271 |
-
|
272 |
-
param_to_state[id(p)] = _muon_state()
|
273 |
-
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
274 |
-
|
275 |
-
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
276 |
-
|
277 |
-
return param_to_state, ordered_params
|
278 |
-
|
279 |
-
def base(self, params, group, lr, weight_decay, momentum):
|
280 |
-
# generate weight updates in distributed fashion
|
281 |
-
for p in params:
|
282 |
-
g = p.grad
|
283 |
-
if g is None:
|
284 |
-
continue
|
285 |
-
if g.ndim > 2:
|
286 |
-
g = g.view(g.size(0), -1)
|
287 |
-
assert g is not None
|
288 |
-
|
289 |
-
# calc update
|
290 |
-
state = self.state[p]
|
291 |
-
if "momentum_buffer" not in state:
|
292 |
-
state["momentum_buffer"] = torch.zeros_like(g)
|
293 |
-
buf = state["momentum_buffer"]
|
294 |
-
buf.mul_(momentum).add_(g)
|
295 |
-
if group["nesterov"]:
|
296 |
-
g = g.add(buf, alpha=momentum)
|
297 |
-
else:
|
298 |
-
g = buf
|
299 |
-
|
300 |
-
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
301 |
-
|
302 |
-
# scale update
|
303 |
-
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
304 |
-
|
305 |
-
# apply weight decay
|
306 |
-
p.data.mul_(1 - lr * weight_decay)
|
307 |
-
|
308 |
-
# apply update
|
309 |
-
p.data.add_(u, alpha=-adjusted_lr)
|
310 |
-
|
311 |
-
def _update_g(self, p, g, group, momentum):
|
312 |
-
# calc update
|
313 |
-
state = self.state[p]
|
314 |
-
if "momentum_buffer" not in state:
|
315 |
-
state["momentum_buffer"] = torch.zeros_like(g)
|
316 |
-
buf = state["momentum_buffer"]
|
317 |
-
buf.mul_(momentum).add_(g)
|
318 |
-
if group["nesterov"]:
|
319 |
-
g = g.add(buf, alpha=momentum)
|
320 |
-
else:
|
321 |
-
g = buf
|
322 |
-
return g
|
323 |
-
|
324 |
-
def _update_p(self, p, u, lr, weight_decay):
|
325 |
-
# scale update
|
326 |
-
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
327 |
-
# apply weight decay
|
328 |
-
p.data.mul_(1 - lr * weight_decay)
|
329 |
-
# apply update
|
330 |
-
p.data.add_(u, alpha=-adjusted_lr)
|
331 |
-
|
332 |
-
def parallel(self, params, group, lr, weight_decay, momentum):
|
333 |
-
"""
|
334 |
-
Perform a parallel optimization step using Muon.
|
335 |
-
"""
|
336 |
-
|
337 |
-
for p in params:
|
338 |
-
g = p.grad
|
339 |
-
if g is None:
|
340 |
-
continue
|
341 |
-
if g.ndim > 2:
|
342 |
-
g = g.view(g.size(0), -1)
|
343 |
-
|
344 |
-
# Update g in the local rank
|
345 |
-
g = self._update_g(
|
346 |
-
p,
|
347 |
-
g,
|
348 |
-
group,
|
349 |
-
momentum=momentum,
|
350 |
-
)
|
351 |
-
p.grad = g
|
352 |
-
|
353 |
-
param_to_state, ordered_params = self.init_state_and_assign_params(
|
354 |
-
params, group
|
355 |
-
)
|
356 |
-
|
357 |
-
def enqueue_gathers(start_idx, chunk_size):
|
358 |
-
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
359 |
-
state = param_to_state[id(p)]
|
360 |
-
_gather(p, state, self.rank, self.comm_stream, group["none_grad"])
|
361 |
-
|
362 |
-
def enqueue_computes(start_idx, chunk_size):
|
363 |
-
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
364 |
-
state = param_to_state[id(p)]
|
365 |
-
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
366 |
-
|
367 |
-
def enqueue_scatters(start_idx, chunk_size):
|
368 |
-
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
369 |
-
state = param_to_state[id(p)]
|
370 |
-
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
371 |
-
_scatter(
|
372 |
-
p, state, adjusted_lr, weight_decay, self.rank, self.comm_stream
|
373 |
-
)
|
374 |
-
|
375 |
-
chunk_size = params[0].device_mesh.mesh.numel()
|
376 |
-
|
377 |
-
# Wait grad update
|
378 |
-
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
379 |
-
|
380 |
-
enqueue_gathers(0, chunk_size)
|
381 |
-
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
382 |
-
enqueue_computes(i, chunk_size)
|
383 |
-
enqueue_gathers(i + chunk_size, chunk_size)
|
384 |
-
enqueue_scatters(i, chunk_size)
|
385 |
-
|
386 |
-
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
387 |
-
|
388 |
-
def step(self, closure=None):
|
389 |
-
"""Perform a single optimization step.
|
390 |
-
|
391 |
-
Args:
|
392 |
-
closure (Callable, optional): A closure that reevaluates the model
|
393 |
-
and returns the loss.
|
394 |
-
"""
|
395 |
-
loss = None
|
396 |
-
if closure is not None:
|
397 |
-
with torch.enable_grad():
|
398 |
-
loss = closure()
|
399 |
-
|
400 |
-
for group in self.param_groups:
|
401 |
-
############################
|
402 |
-
# Muon #
|
403 |
-
############################
|
404 |
-
|
405 |
-
if "use_muon" not in self.state[group["params"][0]]:
|
406 |
-
self._init_state()
|
407 |
-
|
408 |
-
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
409 |
-
lr = group["lr"]
|
410 |
-
weight_decay = group["weight_decay"]
|
411 |
-
momentum = group["momentum"]
|
412 |
-
|
413 |
-
param_dtensors = []
|
414 |
-
param_tensors = []
|
415 |
-
|
416 |
-
for p in params:
|
417 |
-
if p is None or p.grad is None:
|
418 |
-
continue
|
419 |
-
if isinstance(p.data, DTensor):
|
420 |
-
if all(
|
421 |
-
isinstance(placement, Replicate) for placement in p.placements
|
422 |
-
):
|
423 |
-
param_tensors.append(p)
|
424 |
-
else:
|
425 |
-
param_dtensors.append(p)
|
426 |
-
elif isinstance(p.data, torch.Tensor):
|
427 |
-
param_tensors.append(p)
|
428 |
-
else:
|
429 |
-
raise TypeError(f"Unsupported parameter type: {type(p.data)}")
|
430 |
-
|
431 |
-
if self.debug:
|
432 |
-
print(
|
433 |
-
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
434 |
-
flush=True,
|
435 |
-
)
|
436 |
-
|
437 |
-
if len(param_dtensors) > 0:
|
438 |
-
if not dist.is_initialized():
|
439 |
-
raise RuntimeError(
|
440 |
-
"Parallel Muon requires torch.distributed to be initialized."
|
441 |
-
)
|
442 |
-
|
443 |
-
self.parallel(
|
444 |
-
param_dtensors,
|
445 |
-
group,
|
446 |
-
lr=lr,
|
447 |
-
weight_decay=weight_decay,
|
448 |
-
momentum=momentum,
|
449 |
-
)
|
450 |
-
|
451 |
-
if len(param_tensors) > 0:
|
452 |
-
self.base(
|
453 |
-
param_tensors,
|
454 |
-
group,
|
455 |
-
lr=lr,
|
456 |
-
weight_decay=weight_decay,
|
457 |
-
momentum=momentum,
|
458 |
-
)
|
459 |
-
|
460 |
-
############################
|
461 |
-
# AdamW backup #
|
462 |
-
############################
|
463 |
-
|
464 |
-
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
465 |
-
lr = group["lr"]
|
466 |
-
beta1, beta2 = group["adamw_betas"]
|
467 |
-
eps = group["adamw_eps"]
|
468 |
-
weight_decay = group["weight_decay"]
|
469 |
-
|
470 |
-
for p in params:
|
471 |
-
g = p.grad
|
472 |
-
if g is None:
|
473 |
-
continue
|
474 |
-
state = self.state[p]
|
475 |
-
if "step" not in state:
|
476 |
-
state["step"] = 0
|
477 |
-
state["moment1"] = torch.zeros_like(g)
|
478 |
-
state["moment2"] = torch.zeros_like(g)
|
479 |
-
state["step"] += 1
|
480 |
-
step = state["step"]
|
481 |
-
buf1 = state["moment1"]
|
482 |
-
buf2 = state["moment2"]
|
483 |
-
buf1.lerp_(g, 1 - beta1)
|
484 |
-
buf2.lerp_(g.square(), 1 - beta2)
|
485 |
-
|
486 |
-
g = buf1 / (eps + buf2.sqrt())
|
487 |
-
|
488 |
-
bias_correction1 = 1 - beta1**step
|
489 |
-
bias_correction2 = 1 - beta2**step
|
490 |
-
scale = bias_correction1 / bias_correction2**0.5
|
491 |
-
p.data.mul_(1 - lr * weight_decay)
|
492 |
-
p.data.add_(g, alpha=-lr / scale)
|
493 |
-
|
494 |
-
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .muon import Muon
|
2 |
-
|
3 |
-
__all__ = [
|
4 |
-
"Muon",
|
5 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/_ops.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from . import _optimizer_02ac540_dirty
|
3 |
-
ops = torch.ops._optimizer_02ac540_dirty
|
4 |
-
|
5 |
-
def add_op_namespace_prefix(op_name: str):
|
6 |
-
"""
|
7 |
-
Prefix op by namespace.
|
8 |
-
"""
|
9 |
-
return f"_optimizer_02ac540_dirty::{op_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:48795cb66a740b14266d757ac70a6b43fb11df6662970bb4040650d237e6cbc5
|
3 |
-
size 1824184
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/muon.py
DELETED
@@ -1,494 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.distributed as dist
|
6 |
-
from torch.distributed._tensor import DTensor, Replicate
|
7 |
-
|
8 |
-
|
9 |
-
# This code snippet is a modified version adapted from the following GitHub repositories:
|
10 |
-
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
11 |
-
@torch.no_grad()
|
12 |
-
def _zeropower_via_newtonschulz5(G, steps):
|
13 |
-
"""
|
14 |
-
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
15 |
-
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
16 |
-
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
17 |
-
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
18 |
-
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
19 |
-
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
20 |
-
performance at all relative to UV^T, where USV^T = G is the SVD.
|
21 |
-
"""
|
22 |
-
assert len(G.shape) == 2
|
23 |
-
a, b, c = (3.4445, -4.7750, 2.0315)
|
24 |
-
X = G # no manual typecast
|
25 |
-
if G.size(0) > G.size(1):
|
26 |
-
X = X.T
|
27 |
-
# Ensure spectral norm is at most 1
|
28 |
-
X = X / (X.norm() + 1e-7)
|
29 |
-
X = X.bfloat16()
|
30 |
-
# Perform the NS iterations
|
31 |
-
for _ in range(steps):
|
32 |
-
A = X @ X.T
|
33 |
-
# B = (
|
34 |
-
# b * A + c * A @ A
|
35 |
-
# )
|
36 |
-
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
37 |
-
# X = a * X + B @ X
|
38 |
-
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
39 |
-
|
40 |
-
if G.size(0) > G.size(1):
|
41 |
-
X = X.T
|
42 |
-
return X.to(G.dtype)
|
43 |
-
|
44 |
-
|
45 |
-
@dataclass
|
46 |
-
class _muon_state:
|
47 |
-
# TODO: use Optional
|
48 |
-
worker_rank: int | None = None
|
49 |
-
gathered_grad: torch.Tensor | None = None
|
50 |
-
computed_u: torch.Tensor | None = None
|
51 |
-
gather_event: torch.cuda.Event | None = None
|
52 |
-
compute_event: torch.cuda.Event | None = None
|
53 |
-
|
54 |
-
|
55 |
-
@torch.no_grad()
|
56 |
-
def _gather(p, state, rank, comm_stream, none_grad):
|
57 |
-
g = p.grad
|
58 |
-
mesh = g.device_mesh
|
59 |
-
|
60 |
-
if rank == state.worker_rank:
|
61 |
-
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
62 |
-
else:
|
63 |
-
gather_list = None
|
64 |
-
|
65 |
-
with torch.cuda.stream(comm_stream):
|
66 |
-
torch.distributed.gather(
|
67 |
-
g.to_local(),
|
68 |
-
dst=state.worker_rank,
|
69 |
-
gather_list=gather_list,
|
70 |
-
group=mesh.get_group(),
|
71 |
-
)
|
72 |
-
if rank == state.worker_rank:
|
73 |
-
if state.gathered_grad is not None:
|
74 |
-
raise RuntimeError(
|
75 |
-
"Gather event already exists, which should not happen."
|
76 |
-
)
|
77 |
-
state.gathered_grad = torch.cat(gather_list, dim=0)
|
78 |
-
state.gather_event = torch.cuda.Event()
|
79 |
-
state.gather_event.record()
|
80 |
-
else:
|
81 |
-
state.gathered_grad = None
|
82 |
-
state.gather_event = None
|
83 |
-
if none_grad:
|
84 |
-
p.grad = None
|
85 |
-
|
86 |
-
|
87 |
-
@torch.no_grad()
|
88 |
-
def _compute_u(state, steps, rank, compute_stream):
|
89 |
-
with torch.cuda.stream(compute_stream):
|
90 |
-
if rank == state.worker_rank:
|
91 |
-
if state.gather_event is None:
|
92 |
-
raise RuntimeError("Gather event must be set before compute.")
|
93 |
-
compute_stream.wait_event(state.gather_event)
|
94 |
-
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
95 |
-
state.computed_u = u
|
96 |
-
state.compute_event = torch.cuda.Event()
|
97 |
-
state.compute_event.record()
|
98 |
-
# Clear the gathered gradient to free memory
|
99 |
-
state.gathered_grad = None
|
100 |
-
else:
|
101 |
-
state.computed_u = None
|
102 |
-
state.compute_event = None
|
103 |
-
|
104 |
-
|
105 |
-
@torch.no_grad()
|
106 |
-
def _scatter(p, state, lr, weight_decay, rank, comm_stream):
|
107 |
-
u = state.computed_u
|
108 |
-
mesh = p.device_mesh
|
109 |
-
|
110 |
-
with torch.cuda.stream(comm_stream):
|
111 |
-
if rank == state.worker_rank:
|
112 |
-
if state.compute_event is None:
|
113 |
-
raise RuntimeError("Compute event must be set before scatter.")
|
114 |
-
comm_stream.wait_event(state.compute_event)
|
115 |
-
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
116 |
-
else:
|
117 |
-
scatter_list = None
|
118 |
-
|
119 |
-
u = torch.empty_like(p.to_local())
|
120 |
-
torch.distributed.scatter(
|
121 |
-
u,
|
122 |
-
scatter_list=scatter_list,
|
123 |
-
src=state.worker_rank,
|
124 |
-
group=mesh.get_group(),
|
125 |
-
)
|
126 |
-
if rank == state.worker_rank:
|
127 |
-
# Clear u to free memory
|
128 |
-
state.computed_u = None
|
129 |
-
u = DTensor.from_local(
|
130 |
-
u,
|
131 |
-
placements=p.placements,
|
132 |
-
device_mesh=mesh,
|
133 |
-
)
|
134 |
-
p.data.mul_(1 - lr * weight_decay)
|
135 |
-
p.data.add_(u, alpha=-lr)
|
136 |
-
|
137 |
-
|
138 |
-
def default_is_muon(x, name):
|
139 |
-
return x.ndim >= 2 and "embed_tokens" not in name and "lm_head" not in name
|
140 |
-
|
141 |
-
|
142 |
-
class Muon(torch.optim.Optimizer):
|
143 |
-
"""
|
144 |
-
Muon - MomentUm Orthogonalized by Newton-schulz
|
145 |
-
|
146 |
-
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
147 |
-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
148 |
-
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
149 |
-
the advantage that it can be stably run in bfloat16 on the GPU.
|
150 |
-
|
151 |
-
Some warnings:
|
152 |
-
- We believe this optimizer is unlikely to work well for training with small batch size.
|
153 |
-
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
154 |
-
|
155 |
-
Arguments:
|
156 |
-
muon_params: The parameters to be optimized by Muon.
|
157 |
-
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
158 |
-
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
159 |
-
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
160 |
-
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
161 |
-
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
162 |
-
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
163 |
-
adamw_lr: The learning rate for the internal AdamW.
|
164 |
-
adamw_betas: The betas for the internal AdamW.
|
165 |
-
adamw_eps: The epsilon for the internal AdamW.
|
166 |
-
adamw_weight_decay: The weight decay for the internal AdamW.
|
167 |
-
"""
|
168 |
-
|
169 |
-
def __init__(
|
170 |
-
self,
|
171 |
-
model,
|
172 |
-
is_muon_func=default_is_muon,
|
173 |
-
lr=1e-3,
|
174 |
-
momentum=0.95,
|
175 |
-
nesterov=True,
|
176 |
-
ns_steps=5,
|
177 |
-
weight_decay=0.1,
|
178 |
-
adamw_betas=(0.9, 0.95),
|
179 |
-
adamw_eps=1e-8,
|
180 |
-
none_grad=True,
|
181 |
-
debug=False,
|
182 |
-
):
|
183 |
-
defaults = dict(
|
184 |
-
lr=lr,
|
185 |
-
weight_decay=weight_decay,
|
186 |
-
momentum=momentum,
|
187 |
-
nesterov=nesterov,
|
188 |
-
ns_steps=ns_steps,
|
189 |
-
adamw_betas=adamw_betas,
|
190 |
-
adamw_eps=adamw_eps,
|
191 |
-
none_grad=none_grad,
|
192 |
-
)
|
193 |
-
|
194 |
-
super().__init__(model.parameters(), defaults)
|
195 |
-
self.is_muon_func = is_muon_func
|
196 |
-
self.model = model
|
197 |
-
|
198 |
-
if dist.is_initialized():
|
199 |
-
self.rank = dist.get_rank()
|
200 |
-
else:
|
201 |
-
self.rank = None
|
202 |
-
|
203 |
-
self.comm_stream = torch.cuda.Stream()
|
204 |
-
self.compute_stream = torch.cuda.Stream()
|
205 |
-
self.debug = debug
|
206 |
-
|
207 |
-
def __setstate__(self, state):
|
208 |
-
# Sort parameters into those for which we will use Muon, and those for which we will not
|
209 |
-
super().__setstate__(state)
|
210 |
-
self._init_state()
|
211 |
-
|
212 |
-
def _init_state(self):
|
213 |
-
for name, p in self.model.named_parameters():
|
214 |
-
if self.is_muon_func(p, name):
|
215 |
-
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
216 |
-
assert p.ndim == 2, p.ndim
|
217 |
-
self.state[p]["use_muon"] = True
|
218 |
-
else:
|
219 |
-
# Do not use Muon for parameters in adamw_params
|
220 |
-
self.state[p]["use_muon"] = False
|
221 |
-
|
222 |
-
def _calc_flops(self, G, steps):
|
223 |
-
assert len(G.shape) == 2
|
224 |
-
M, N = G.shape
|
225 |
-
if M > N:
|
226 |
-
M, N = N, M
|
227 |
-
|
228 |
-
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
229 |
-
|
230 |
-
def adjust_lr_for_muon(self, lr, param_shape):
|
231 |
-
A, B = param_shape[:2]
|
232 |
-
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
233 |
-
# as describted in the paper
|
234 |
-
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
235 |
-
adjusted_lr = lr * adjusted_ratio
|
236 |
-
return adjusted_lr
|
237 |
-
|
238 |
-
def init_state_and_assign_params(self, params, group):
|
239 |
-
param_to_state = {}
|
240 |
-
param_to_flops = {}
|
241 |
-
|
242 |
-
total_flops = 0
|
243 |
-
for p in params:
|
244 |
-
g = p.grad
|
245 |
-
if g is None:
|
246 |
-
continue
|
247 |
-
assert g.ndim == 2, "Muon only supports 2D parameters."
|
248 |
-
|
249 |
-
flops = self._calc_flops(g, group["ns_steps"])
|
250 |
-
param_to_flops[id(p)] = flops
|
251 |
-
total_flops += flops
|
252 |
-
|
253 |
-
if self.debug:
|
254 |
-
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
255 |
-
|
256 |
-
ordered_params = sorted(
|
257 |
-
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
258 |
-
)
|
259 |
-
|
260 |
-
round_robin = 0
|
261 |
-
mesh = None
|
262 |
-
for p in ordered_params:
|
263 |
-
if mesh is None:
|
264 |
-
mesh = p.device_mesh
|
265 |
-
if mesh.ndim != 1:
|
266 |
-
raise NotImplementedError(
|
267 |
-
"Muon requires a 1D mesh for distributed training yet."
|
268 |
-
)
|
269 |
-
elif mesh != p.device_mesh:
|
270 |
-
raise ValueError("All parameters must be on the same mesh.")
|
271 |
-
|
272 |
-
param_to_state[id(p)] = _muon_state()
|
273 |
-
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
274 |
-
|
275 |
-
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
276 |
-
|
277 |
-
return param_to_state, ordered_params
|
278 |
-
|
279 |
-
def base(self, params, group, lr, weight_decay, momentum):
|
280 |
-
# generate weight updates in distributed fashion
|
281 |
-
for p in params:
|
282 |
-
g = p.grad
|
283 |
-
if g is None:
|
284 |
-
continue
|
285 |
-
if g.ndim > 2:
|
286 |
-
g = g.view(g.size(0), -1)
|
287 |
-
assert g is not None
|
288 |
-
|
289 |
-
# calc update
|
290 |
-
state = self.state[p]
|
291 |
-
if "momentum_buffer" not in state:
|
292 |
-
state["momentum_buffer"] = torch.zeros_like(g)
|
293 |
-
buf = state["momentum_buffer"]
|
294 |
-
buf.mul_(momentum).add_(g)
|
295 |
-
if group["nesterov"]:
|
296 |
-
g = g.add(buf, alpha=momentum)
|
297 |
-
else:
|
298 |
-
g = buf
|
299 |
-
|
300 |
-
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
301 |
-
|
302 |
-
# scale update
|
303 |
-
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
304 |
-
|
305 |
-
# apply weight decay
|
306 |
-
p.data.mul_(1 - lr * weight_decay)
|
307 |
-
|
308 |
-
# apply update
|
309 |
-
p.data.add_(u, alpha=-adjusted_lr)
|
310 |
-
|
311 |
-
def _update_g(self, p, g, group, momentum):
|
312 |
-
# calc update
|
313 |
-
state = self.state[p]
|
314 |
-
if "momentum_buffer" not in state:
|
315 |
-
state["momentum_buffer"] = torch.zeros_like(g)
|
316 |
-
buf = state["momentum_buffer"]
|
317 |
-
buf.mul_(momentum).add_(g)
|
318 |
-
if group["nesterov"]:
|
319 |
-
g = g.add(buf, alpha=momentum)
|
320 |
-
else:
|
321 |
-
g = buf
|
322 |
-
return g
|
323 |
-
|
324 |
-
def _update_p(self, p, u, lr, weight_decay):
|
325 |
-
# scale update
|
326 |
-
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
327 |
-
# apply weight decay
|
328 |
-
p.data.mul_(1 - lr * weight_decay)
|
329 |
-
# apply update
|
330 |
-
p.data.add_(u, alpha=-adjusted_lr)
|
331 |
-
|
332 |
-
def parallel(self, params, group, lr, weight_decay, momentum):
|
333 |
-
"""
|
334 |
-
Perform a parallel optimization step using Muon.
|
335 |
-
"""
|
336 |
-
|
337 |
-
for p in params:
|
338 |
-
g = p.grad
|
339 |
-
if g is None:
|
340 |
-
continue
|
341 |
-
if g.ndim > 2:
|
342 |
-
g = g.view(g.size(0), -1)
|
343 |
-
|
344 |
-
# Update g in the local rank
|
345 |
-
g = self._update_g(
|
346 |
-
p,
|
347 |
-
g,
|
348 |
-
group,
|
349 |
-
momentum=momentum,
|
350 |
-
)
|
351 |
-
p.grad = g
|
352 |
-
|
353 |
-
param_to_state, ordered_params = self.init_state_and_assign_params(
|
354 |
-
params, group
|
355 |
-
)
|
356 |
-
|
357 |
-
def enqueue_gathers(start_idx, chunk_size):
|
358 |
-
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
359 |
-
state = param_to_state[id(p)]
|
360 |
-
_gather(p, state, self.rank, self.comm_stream, group["none_grad"])
|
361 |
-
|
362 |
-
def enqueue_computes(start_idx, chunk_size):
|
363 |
-
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
364 |
-
state = param_to_state[id(p)]
|
365 |
-
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
366 |
-
|
367 |
-
def enqueue_scatters(start_idx, chunk_size):
|
368 |
-
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
369 |
-
state = param_to_state[id(p)]
|
370 |
-
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
371 |
-
_scatter(
|
372 |
-
p, state, adjusted_lr, weight_decay, self.rank, self.comm_stream
|
373 |
-
)
|
374 |
-
|
375 |
-
chunk_size = params[0].device_mesh.mesh.numel()
|
376 |
-
|
377 |
-
# Wait grad update
|
378 |
-
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
379 |
-
|
380 |
-
enqueue_gathers(0, chunk_size)
|
381 |
-
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
382 |
-
enqueue_computes(i, chunk_size)
|
383 |
-
enqueue_gathers(i + chunk_size, chunk_size)
|
384 |
-
enqueue_scatters(i, chunk_size)
|
385 |
-
|
386 |
-
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
387 |
-
|
388 |
-
def step(self, closure=None):
|
389 |
-
"""Perform a single optimization step.
|
390 |
-
|
391 |
-
Args:
|
392 |
-
closure (Callable, optional): A closure that reevaluates the model
|
393 |
-
and returns the loss.
|
394 |
-
"""
|
395 |
-
loss = None
|
396 |
-
if closure is not None:
|
397 |
-
with torch.enable_grad():
|
398 |
-
loss = closure()
|
399 |
-
|
400 |
-
for group in self.param_groups:
|
401 |
-
############################
|
402 |
-
# Muon #
|
403 |
-
############################
|
404 |
-
|
405 |
-
if "use_muon" not in self.state[group["params"][0]]:
|
406 |
-
self._init_state()
|
407 |
-
|
408 |
-
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
409 |
-
lr = group["lr"]
|
410 |
-
weight_decay = group["weight_decay"]
|
411 |
-
momentum = group["momentum"]
|
412 |
-
|
413 |
-
param_dtensors = []
|
414 |
-
param_tensors = []
|
415 |
-
|
416 |
-
for p in params:
|
417 |
-
if p is None or p.grad is None:
|
418 |
-
continue
|
419 |
-
if isinstance(p.data, DTensor):
|
420 |
-
if all(
|
421 |
-
isinstance(placement, Replicate) for placement in p.placements
|
422 |
-
):
|
423 |
-
param_tensors.append(p)
|
424 |
-
else:
|
425 |
-
param_dtensors.append(p)
|
426 |
-
elif isinstance(p.data, torch.Tensor):
|
427 |
-
param_tensors.append(p)
|
428 |
-
else:
|
429 |
-
raise TypeError(f"Unsupported parameter type: {type(p.data)}")
|
430 |
-
|
431 |
-
if self.debug:
|
432 |
-
print(
|
433 |
-
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
434 |
-
flush=True,
|
435 |
-
)
|
436 |
-
|
437 |
-
if len(param_dtensors) > 0:
|
438 |
-
if not dist.is_initialized():
|
439 |
-
raise RuntimeError(
|
440 |
-
"Parallel Muon requires torch.distributed to be initialized."
|
441 |
-
)
|
442 |
-
|
443 |
-
self.parallel(
|
444 |
-
param_dtensors,
|
445 |
-
group,
|
446 |
-
lr=lr,
|
447 |
-
weight_decay=weight_decay,
|
448 |
-
momentum=momentum,
|
449 |
-
)
|
450 |
-
|
451 |
-
if len(param_tensors) > 0:
|
452 |
-
self.base(
|
453 |
-
param_tensors,
|
454 |
-
group,
|
455 |
-
lr=lr,
|
456 |
-
weight_decay=weight_decay,
|
457 |
-
momentum=momentum,
|
458 |
-
)
|
459 |
-
|
460 |
-
############################
|
461 |
-
# AdamW backup #
|
462 |
-
############################
|
463 |
-
|
464 |
-
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
465 |
-
lr = group["lr"]
|
466 |
-
beta1, beta2 = group["adamw_betas"]
|
467 |
-
eps = group["adamw_eps"]
|
468 |
-
weight_decay = group["weight_decay"]
|
469 |
-
|
470 |
-
for p in params:
|
471 |
-
g = p.grad
|
472 |
-
if g is None:
|
473 |
-
continue
|
474 |
-
state = self.state[p]
|
475 |
-
if "step" not in state:
|
476 |
-
state["step"] = 0
|
477 |
-
state["moment1"] = torch.zeros_like(g)
|
478 |
-
state["moment2"] = torch.zeros_like(g)
|
479 |
-
state["step"] += 1
|
480 |
-
step = state["step"]
|
481 |
-
buf1 = state["moment1"]
|
482 |
-
buf2 = state["moment2"]
|
483 |
-
buf1.lerp_(g, 1 - beta1)
|
484 |
-
buf2.lerp_(g.square(), 1 - beta2)
|
485 |
-
|
486 |
-
g = buf1 / (eps + buf2.sqrt())
|
487 |
-
|
488 |
-
bias_correction1 = 1 - beta1**step
|
489 |
-
bias_correction2 = 1 - beta2**step
|
490 |
-
scale = bias_correction1 / bias_correction2**0.5
|
491 |
-
p.data.mul_(1 - lr * weight_decay)
|
492 |
-
p.data.add_(g, alpha=-lr / scale)
|
493 |
-
|
494 |
-
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/__init__.py
CHANGED
File without changes
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (307 Bytes). View file
|
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc
ADDED
Binary file (22.4 kB). View file
|
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _optimizer_1f13dae_dirty
|
3 |
+
ops = torch.ops._optimizer_1f13dae_dirty
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_optimizer_1f13dae_dirty::{op_name}"
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/{_optimizer_02ac540_dirty.abi3.so β _optimizer_1f13dae_dirty.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1787368
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dc5f8a57aa60483209dfcbb0c7cc0e54f1739d643145c1e685fbe2b6675ac43
|
3 |
size 1787368
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/muon.py
CHANGED
File without changes
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/__init__.py
CHANGED
File without changes
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (307 Bytes). View file
|
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc
ADDED
Binary file (22.4 kB). View file
|
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _optimizer_1f13dae_dirty
|
3 |
+
ops = torch.ops._optimizer_1f13dae_dirty
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_optimizer_1f13dae_dirty::{op_name}"
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/{_optimizer_02ac540_dirty.abi3.so β _optimizer_1f13dae_dirty.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1824256
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96c7e281f9634e3b252f720f4fea4f61490f2f1a1ef1280a3e259decb41c846f
|
3 |
size 1824256
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/muon.py
CHANGED
File without changes
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/__init__.py
CHANGED
File without changes
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (307 Bytes). View file
|
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc
ADDED
Binary file (22.4 kB). View file
|
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _optimizer_1f13dae_dirty
|
3 |
+
ops = torch.ops._optimizer_1f13dae_dirty
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_optimizer_1f13dae_dirty::{op_name}"
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/{_optimizer_02ac540_dirty.abi3.so β _optimizer_1f13dae_dirty.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1883352
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:046a45fae81c2b7d79ff2237a1d26277f4883ef8a8b87a3980bf06d1182711b1
|
3 |
size 1883352
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/muon.py
CHANGED
File without changes
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__init__.py
CHANGED
File without changes
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/__init__.cpython-312.pyc
DELETED
Binary file (252 Bytes)
|
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (308 Bytes). View file
|
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/muon.cpython-312.pyc
DELETED
Binary file (22.3 kB)
|
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc
ADDED
Binary file (22.4 kB). View file
|
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _optimizer_1f13dae_dirty
|
3 |
+
ops = torch.ops._optimizer_1f13dae_dirty
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_optimizer_1f13dae_dirty::{op_name}"
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a96bfd1f461d7cd029dd39d142d2999dcc86dd7f56fb40f045e00f3fb2c400bd
|
3 |
-
size 1749648
|
|
|
|
|
|
|
|
build/{torch26-cxx11-cu126-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so β torch27-cxx11-rocm63-x86_64-linux/optimizer/_optimizer_1f13dae_dirty.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d9ee2420e8528032369c476152a1960d123034a83e2c43f38a7fb2d1423aa23
|
3 |
+
size 1749840
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/muon.py
CHANGED
File without changes
|
build/{torch26-cxx11-cu118-x86_64-linux β torch28-cxx11-cu126-x86_64-linux}/optimizer/__init__.py
RENAMED
File without changes
|
build/torch28-cxx11-cu126-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (307 Bytes). View file
|
|
build/torch28-cxx11-cu126-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc
ADDED
Binary file (22.4 kB). View file
|
|
build/{torch26-cxx11-cu118-x86_64-linux β torch28-cxx11-cu126-x86_64-linux}/optimizer/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _optimizer_1f13dae_dirty
|
3 |
+
ops = torch.ops._optimizer_1f13dae_dirty
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_optimizer_1f13dae_dirty::{op_name}"
|
build/{torch26-cxx11-cu118-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so β torch28-cxx11-cu126-x86_64-linux/optimizer/_optimizer_1f13dae_dirty.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a082b5629efc4e9b8ce608713665d47904949b5d220dad350049bc806d58ecd7
|
3 |
+
size 1824256
|
build/{torch26-cxx11-cu118-x86_64-linux β torch28-cxx11-cu126-x86_64-linux}/optimizer/muon.py
RENAMED
File without changes
|
build/{torch26-cxx11-cu124-x86_64-linux β torch28-cxx11-cu128-x86_64-linux}/optimizer/__init__.py
RENAMED
File without changes
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (307 Bytes). View file
|
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/__pycache__/muon.cpython-313.pyc
ADDED
Binary file (22.4 kB). View file
|
|
build/{torch26-cxx11-cu126-x86_64-linux β torch28-cxx11-cu128-x86_64-linux}/optimizer/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _optimizer_1f13dae_dirty
|
3 |
+
ops = torch.ops._optimizer_1f13dae_dirty
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_optimizer_1f13dae_dirty::{op_name}"
|
build/{torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_02ac540_dirty.abi3.so β torch28-cxx11-cu128-x86_64-linux/optimizer/_optimizer_1f13dae_dirty.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d2e65e315cd82d0b6fc2043ff37ee2d1223d6bd293ef552d658db5bf4de0a45
|
3 |
+
size 1883352
|
build/{torch26-cxx11-cu124-x86_64-linux β torch28-cxx11-cu128-x86_64-linux}/optimizer/muon.py
RENAMED
File without changes
|
build/{torch26-cxx11-cu126-x86_64-linux β torch28-cxx11-cu129-x86_64-linux}/optimizer/__init__.py
RENAMED
File without changes
|