Octen-Embedding-4B
Octen-Embedding-4B is a text embedding model designed for semantic search and retrieval tasks. This model is fine-tuned from Qwen/Qwen3-Embedding-4B and supports multiple languages, providing high-quality embeddings for various applications.
Model Details
- Base Model: Qwen/Qwen3-Embedding-4B
- Model Size: 4B parameters
- Max Sequence Length: 40,960 tokens
- Embedding Dimension: 2560
- Languages: English, Chinese, and multilingual support
- Training Method: LoRA fine-tuning
Usage
Using Sentence Transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Octen/Octen-Embedding-4B")
# Encode sentences
sentences = [
"This is an example sentence",
"Each sentence is converted to a vector"
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Output: (2, 2560)
# Compute similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
Using Transformers
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("Octen/Octen-Embedding-4B", padding_side="left")
model = AutoModel.from_pretrained("Octen/Octen-Embedding-4B")
model.eval()
def encode(texts):
inputs = tokenizer(texts, padding=True, truncation=True,
max_length=8192, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Use last token embedding
embeddings = outputs.last_hidden_state[:, -1, :]
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Example usage
texts = ["Hello world", "ไฝ ๅฅฝไธ็"]
embeddings = encode(texts)
similarity = torch.matmul(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
Recommended Use Cases
- Semantic search and information retrieval
- Document similarity and clustering
- Question answering
- Cross-lingual retrieval
- Text classification with embeddings
Limitations
- Performance may vary across different domains and languages
- Very long documents (>40K tokens) require truncation
- Optimized for retrieval tasks, not for text generation
License
This model is licensed under the Apache License 2.0.
This model is derived from Qwen/Qwen3-Embedding-4B, which is also licensed under Apache License 2.0.
Paper
For more details, please refer to our blog post: Octen Series: Optimizing Embedding Models to #1 on RTEB Leaderboard
Citation
If you find our work helpful, please consider citing:
@misc{octen2025rteb,
title={Octen Series: Optimizing Embedding Models to #1 on RTEB Leaderboard},
author={Octen Team},
year={2025},
url={https://octen-team.github.io/octen_blog/posts/octen-rteb-first-place/}
}
- Downloads last month
- 480