Update modeling_internvl_chat.py

#3
Files changed (1) hide show
  1. modeling_internvl_chat.py +93 -5
modeling_internvl_chat.py CHANGED
@@ -5,13 +5,15 @@
5
  # --------------------------------------------------------
6
  import warnings
7
  from typing import Any, List, Optional, Tuple, Union
8
-
9
  import torch.utils.checkpoint
10
  import transformers
11
  from torch import nn
12
  from torch.nn import CrossEntropyLoss
13
  from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
  LlamaTokenizer, Qwen2ForCausalLM)
 
 
15
  from transformers.modeling_outputs import CausalLMOutputWithPast
16
  from transformers.modeling_utils import PreTrainedModel
17
  from transformers.utils import ModelOutput, logging
@@ -22,7 +24,8 @@ from .modeling_intern_vit import InternVisionModel, has_flash_attn
22
  from .modeling_internlm2 import InternLM2ForCausalLM
23
 
24
  logger = logging.get_logger(__name__)
25
-
 
26
 
27
  def version_cmp(v1, v2, op='eq'):
28
  import operator
@@ -31,6 +34,76 @@ def version_cmp(v1, v2, op='eq'):
31
  op_func = getattr(operator, op)
32
  return op_func(version.parse(v1), version.parse(v2))
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  class InternVLChatModel(PreTrainedModel):
36
  config_class = InternVLChatConfig
@@ -252,10 +325,25 @@ class InternVLChatModel(PreTrainedModel):
252
  responses = [response.split(template.sep)[0].strip() for response in responses]
253
  return responses
254
 
255
- def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
256
  num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
257
  verbose=False):
258
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259
  if history is None and pixel_values is not None and '<image>' not in question:
260
  question = '<image>\n' + question
261
 
@@ -360,4 +448,4 @@ class InternVLChatModel(PreTrainedModel):
360
  return self.language_model.get_input_embeddings()
361
 
362
  def get_output_embeddings(self):
363
- return self.language_model.get_output_embeddings()
 
5
  # --------------------------------------------------------
6
  import warnings
7
  from typing import Any, List, Optional, Tuple, Union
8
+ from PIL import Image
9
  import torch.utils.checkpoint
10
  import transformers
11
  from torch import nn
12
  from torch.nn import CrossEntropyLoss
13
  from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
  LlamaTokenizer, Qwen2ForCausalLM)
15
+ import torchvision.transforms as T
16
+ from torchvision.transforms.functional import InterpolationMode
17
  from transformers.modeling_outputs import CausalLMOutputWithPast
18
  from transformers.modeling_utils import PreTrainedModel
19
  from transformers.utils import ModelOutput, logging
 
24
  from .modeling_internlm2 import InternLM2ForCausalLM
25
 
26
  logger = logging.get_logger(__name__)
27
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
28
+ IMAGENET_STD = (0.229, 0.224, 0.225)
29
 
30
  def version_cmp(v1, v2, op='eq'):
31
  import operator
 
34
  op_func = getattr(operator, op)
35
  return op_func(version.parse(v1), version.parse(v2))
36
 
37
+ def build_transform(input_size):
38
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
39
+ transform = T.Compose([
40
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
41
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
42
+ T.ToTensor(),
43
+ T.Normalize(mean=MEAN, std=STD)
44
+ ])
45
+ return transform
46
+
47
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
48
+ best_ratio_diff = float('inf')
49
+ best_ratio = (1, 1)
50
+ area = width * height
51
+ for ratio in target_ratios:
52
+ target_aspect_ratio = ratio[0] / ratio[1]
53
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
54
+ if ratio_diff < best_ratio_diff:
55
+ best_ratio_diff = ratio_diff
56
+ best_ratio = ratio
57
+ elif ratio_diff == best_ratio_diff:
58
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
59
+ best_ratio = ratio
60
+ return best_ratio
61
+
62
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
63
+ orig_width, orig_height = image.size
64
+ aspect_ratio = orig_width / orig_height
65
+
66
+ # calculate the existing image aspect ratio
67
+ target_ratios = set(
68
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
69
+ i * j <= max_num and i * j >= min_num)
70
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
71
+
72
+ # find the closest aspect ratio to the target
73
+ target_aspect_ratio = find_closest_aspect_ratio(
74
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
75
+
76
+ # calculate the target width and height
77
+ target_width = image_size * target_aspect_ratio[0]
78
+ target_height = image_size * target_aspect_ratio[1]
79
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
80
+
81
+ # resize the image
82
+ resized_img = image.resize((target_width, target_height))
83
+ processed_images = []
84
+ for i in range(blocks):
85
+ box = (
86
+ (i % (target_width // image_size)) * image_size,
87
+ (i // (target_width // image_size)) * image_size,
88
+ ((i % (target_width // image_size)) + 1) * image_size,
89
+ ((i // (target_width // image_size)) + 1) * image_size
90
+ )
91
+ # split the image
92
+ split_img = resized_img.crop(box)
93
+ processed_images.append(split_img)
94
+ assert len(processed_images) == blocks
95
+ if use_thumbnail and len(processed_images) != 1:
96
+ thumbnail_img = image.resize((image_size, image_size))
97
+ processed_images.append(thumbnail_img)
98
+ return processed_images
99
+
100
+ def load_image(image_file, input_size=448, max_num=12):
101
+ image = Image.open(image_file).convert('RGB')
102
+ transform = build_transform(input_size=input_size)
103
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
104
+ pixel_values = [transform(image) for image in images]
105
+ pixel_values = torch.stack(pixel_values)
106
+ return pixel_values
107
 
108
  class InternVLChatModel(PreTrainedModel):
109
  config_class = InternVLChatConfig
 
325
  responses = [response.split(template.sep)[0].strip() for response in responses]
326
  return responses
327
 
328
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, image_dirs=None,
329
  num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
330
  verbose=False):
331
+ if image_dirs is not None:
332
+ print("----------------------------------")
333
+ print("Using image_dirs to load images. 'pixel_values' and 'num_patches_list' will be ignored.")
334
+ print("You should provide all the previous image files and the current image file in the 'image_dirs' argument.")
335
+ print("----------------------------------")
336
+
337
+ if isinstance(image_dirs, str):
338
+ image_dirs = [image_dirs]
339
+ elif isinstance(image_dirs, list):
340
+ pass
341
+ else:
342
+ raise ValueError(f'Invalid image_dirs: {image_dirs}. It should be a string or a list of strings.')
343
+ image_values = [load_image(image_file, max_num=12).to(torch.float16).cuda() for image_file in image_dirs]
344
+ pixel_values = torch.cat(image_values, dim=0)
345
+ num_patches_list = [image_values[i].shape[0] for i in range(len(image_values))]
346
+
347
  if history is None and pixel_values is not None and '<image>' not in question:
348
  question = '<image>\n' + question
349
 
 
448
  return self.language_model.get_input_embeddings()
449
 
450
  def get_output_embeddings(self):
451
+ return self.language_model.get_output_embeddings()