SCALECUA: SCALING UP COMPUTER USE AGENTS WITH CROSS-PLATFORM DATA
[📂 GitHub] [📜 Paper] [🚀 Quick Start]
Introduction
Recent advances in Vision-Language Models have enabled the development of agents capable of automating interactions with graphical user interfaces. Some computer use agents demonstrate strong performance, while they are typically built on closed-source models or inaccessible proprietary datasets. Moreover, the existing open-source datasets still remain insufficient for developing cross-platform general-purpose computer-use agents. To bridge this gap, we scale up the computer use dataset, constructed via a novel dual-loop interactive pipeline that combines an automated agent and a human expert into data collection. It spans 6 operating systems and 3 task domains, offering a large-scale and diverse corpus for training computer use agents. Building on this corpus, we develop ScaleCUA, capable of seamless operation across heterogeneous platforms. Trained on our dataset, it delivers consistent gains on several benchmarks, improving absolute success rates by +26.6 points on WebArena-Lite-v2 and +10.7 points on ScreenSpot-Pro compared to the baseline. Moreover, our ScaleCUA family achieves state-of-the-art performance across multiple benchmarks, e.g., 94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G and 47.4% on WebArena-Lite-v2. These results highlight the effectiveness of our data-centric methodology in scaling both GUI understanding, grounding, and cross-platform task completion. We make our data, models, and code publicly available to facilitate future research: https://github.com/OpenGVLab/ScaleCUA.
Model Loading
We provide an example code to run ScaleCUA
using transformers
.
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"OpenGVLab/ScaleCUA-7B", torch_dtype="auto", device_map="auto"
)
min_pixels = 3136
max_pixels = 2109744
processor = AutoProcessor.from_pretrained("OpenGVLab/ScaleCUA-7B", min_pixels=min_pixels, max_pixels=max_pixels)
Direct Action Mode as grounder
For tasks that require direct GUI grounding (e.g., identifying and clicking a specific button from a description) or serve as grounder in agentic workflow, you can use the Direct Action Mode. This mode focuses on generating immediate, executable actions based on the visual input.
- To enable this mode, set the system prompt as follows:
SCALECUA_SYSTEM_PROMPT_GROUNDER = '''You are an autonomous GUI agent capable of operating on desktops, mobile devices, and web browsers. Your primary function is to analyze screen captures and perform appropriate UI actions to complete assigned tasks.
## Action Space
def click(
x: float | None = None,
y: float | None = None,
clicks: int = 1,
button: str = "left",
) -> None:
"""Clicks on the screen at the specified coordinates. The `x` and `y` parameter specify where the mouse event occurs. If not provided, the current mouse position is used. The `clicks` parameter specifies how many times to click, and the `button` parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
pass
def doubleClick(
x: float | None = None,
y: float | None = None,
button: str = "left",
) -> None:
"""Performs a double click. This is a wrapper function for click(x, y, 2, 'left')."""
pass
def rightClick(x: float | None = None, y: float | None = None) -> None:
"""Performs a right mouse button click. This is a wrapper function for click(x, y, 1, 'right')."""
pass
def moveTo(x: float, y: float) -> None:
"""Move the mouse to the specified coordinates."""
pass
def dragTo(
x: float | None = None, y: float | None = None, button: str = "left"
) -> None:
"""Performs a drag-to action with optional `x` and `y` coordinates and button."""
pass
def swipe(
from_coord: tuple[float, float] | None = None,
to_coord: tuple[float, float] | None = None,
direction: str = "up",
amount: float = 0.5,
) -> None:
"""Performs a swipe action on the screen. The `from_coord` and `to_coord` specify the starting and ending coordinates of the swipe. If `to_coord` is not provided, the `direction` and `amount` parameters are used to determine the swipe direction and distance. The `direction` can be 'up', 'down', 'left', or 'right', and the `amount` specifies how far to swipe relative to the screen size (0 to 1)."""
pass
def long_press(x: float, y: float, duration: int = 1) -> None:
"""Long press on the screen at the specified coordinates. The `duration` specifies how long to hold the press in seconds."""
pass
## Input Specification
- Screenshot of the current screen + task description
## Output Format
<action>
[A set of executable action command]
</action>
## Note
- Avoid action(s) that would lead to invalid states.
- The generated action(s) must exist within the defined action space.
- The generated action(s) should be enclosed within <action></action> tags.'''
- Use the above system prompt to generate prediction:
low_level_instruction = "Click the 'X' button in the upper right corner of the pop-up to close it and access the car selection options."
messages = [
{
"role": "system",
"content":[
{
"type": "text",
"text": SCALECUA_SYSTEM_PROMPT_GROUNDER,
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "/path/to/your/image",
},
{"type": "text", "text": low_level_instruction},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
- Extract coordinates and transform it based on the resized image:
from qwen_vl_utils import smart_resize
def parse_scalecua_grounder_response(response, image_width: int, image_height: int, resized_width: int, resized_height: int) -> List[str]:
response = response.strip()
logger.info(f"Extracting coordinates from: {response}")
match = re.search(r"\((\d+),\s*(\d+)\)", response)
if not match:
pattern = r'\((?:x=)?([-+]?\d*\.\d+|\d+)(?:,\s*(?:y=)?([-+]?\d*\.\d+|\d+))?\)'
match = re.search(pattern, response)
x = int(float(match.group(1)) / resized_width * width)
y = int(float(match.group(2)) / resized_height * height) if match.group(2) else None
if y is not None:
return (x, y)
resize_h, resize_w = smart_resize(image_height, image_width, min_pixels=min_pixels, max_pixels=max_pixels)
x, y = parse_scalecua_grounder_response(output_text, image_width, image_height, resize_w, resize_h)
Reasoned Action Mode as native agents
For complex, multi-step tasks, the Reasoned Action Mode guides the model to first think through the problem, state its intended operation, and then generate the corresponding action code. This is the recommended mode for general computer use automation. We will demonstrate an example of ScalueCUA in Ubuntu OS:
- To enable this mode, use the following system prompt:
SCALECUA_SYSTEM_PROMPT_AGENT = '''You are an autonomous GUI agent operating on the **Linux (Ubuntu)** platform. Your primary function is to analyze screen captures and perform appropriate UI actions to complete assigned tasks.
## Action Space
def click(
x: float | None = None,
y: float | None = None,
clicks: int = 1,
button: str = "left",
) -> None:
"""Clicks on the screen at the specified coordinates. The `x` and `y` parameter specify where the mouse event occurs. If not provided, the current mouse position is used. The `clicks` parameter specifies how many times to click, and the `button` parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
pass
def doubleClick(
x: float | None = None,
y: float | None = None,
button: str = "left",
) -> None:
"""Performs a double click. This is a wrapper function for click(x, y, 2, 'left')."""
pass
def rightClick(x: float | None = None, y: float | None = None) -> None:
"""Performs a right mouse button click. This is a wrapper function for click(x, y, 1, 'right')."""
pass
def scroll(clicks: int, x: float | None = None, y: float | None = None) -> None:
"""Performs a scroll of the mouse scroll wheel at the specified coordinates. The `clicks` specifies how many clicks to scroll. The direction of the scroll (vertical or horizontal) depends on the underlying operating system. Normally, positive values scroll up, and negative values scroll down."""
pass
def moveTo(x: float, y: float) -> None:
"""Move the mouse to the specified coordinates."""
pass
def dragTo(
x: float | None = None, y: float | None = None, button: str = "left"
) -> None:
"""Performs a drag-to action with optional `x` and `y` coordinates and button."""
pass
def press(keys: str | list[str], presses: int = 1) -> None:
"""Performs a keyboard key press down, followed by a release. The function supports pressing a single key or a list of keys, multiple presses, and customizable intervals between presses."""
pass
def hotkey(*args: str) -> None:
"""Performs key down presses on the arguments passed in order, then performs key releases in reverse order. This is used to simulate keyboard shortcuts (e.g., 'Ctrl-Shift-C')."""
pass
def keyDown(key: str) -> None:
"""Performs a keyboard key press without the release. This will put that key in a held down state."""
pass
def keyUp(key: str) -> None:
"""Performs a keyboard key release (without the press down beforehand)."""
pass
def write(message: str) -> None:
"""Write the specified text."""
pass
def call_user() -> None:
"""Call the user."""
pass
def wait(seconds: int = 3) -> None:
"""Wait for the change to happen."""
pass
def response(answer: str) -> None:
"""Answer a question or provide a response to an user query."""
pass
def terminate(status: str = "success", info: str | None = None) -> None:
"""Terminate the current task with a status. The `status` specifies the termination status ('success', 'failure'), and the `info` can provide additional information about the termination."""
pass
## Input Specification
- Screenshot of the current screen + task description + your past interaction history with UI to finish assigned tasks.
## Output Format
<think>
[Your reasoning process here]
</think>
<operation>
[Next intended operation description]
</operation>
<action>
[A set of executable action command]
</action>
## Note
- Avoid actions that would lead to invalid states.
- The generated action(s) must exist within the defined action space.
- The reasoning process, operation and action(s) in your response should be enclosed within <think></think>, <operation></operation> and <action></action> tags, respectively.'''
- Use the above system prompt to generate prediction:
SCALECUA_USER_PROMPT = '''Please generate the next move according to the UI screenshot, the task and previous operations.
Task:
{instruction}
Previous operations:
{history}
'''
def format_history(history):
if len(history) > 0:
actions_history = [f"Step {i+1}: {low_level}" for i, low_level in enumerate(history)]
return "\n".join(actions_history)
else:
return None
history = ["Click on 'Chrome'", "Click on the three-dot menu icon in the top right corner of the Chrome window to open the browser settings menu."]
step_history = format_history(history)
task_instruction = "I want to check my password information in Chrome"
user_prompt = SCALECUA_USER_PROMPT.format(
instruction=task_instruction,
history=step_history,
)
messages = [
{
"role": "system",
"content":[
{
"type": "text",
"text": SCALECUA_SYSTEM_PROMPT_AGENT,
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "/path/to/your/image",
},
{"type": "text", "text": user_prompt},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
- Extract think, low-level instruction and actions from response:
def parse_response(response: str) -> Dict:
action_matches = re.findall(r'<action>\s*(.*?)\s*</action>', response, re.DOTALL)
actions = []
if action_matches:
for match in action_matches:
# Split each match by newline and strip whitespace from each line
lines = [line.strip() for line in match.split('\n') if line.strip()]
actions.extend(lines)
operation_match = re.search(r'<operation>\s*(.*?)\s*</operation>', response, re.DOTALL)
operation = operation_match.group(1).strip() if operation_match else None
think_match = re.search(r'<think>\s*(.*?)\s*</think>', response, re.DOTALL)
think = think_match.group(1).strip() if think_match else None
return (think, operation, actions)
def parse_actions(self, actions):
parsed_action = []
for action in actions:
match = re.match(r"(\w+)\((.*)\)", action)
if not match:
return None
func_name = match.group(1)
args_str = match.group(2)
args = {}
if 'hotkey' in func_name.lower():
keys = re.findall(r"'(.*?)'", args_str)
keys = [key.lower() for key in keys]
args["args"] = keys
elif 'press' in func_name.lower():
keys = None
presses = 1
presses_match = re.search(r"presses\s*=\s*(\d+)", args_str)
if presses_match:
presses = int(presses_match.group(1))
args_str = args_str[:presses_match.start()] + args_str[presses_match.end():]
args_str = args_str.rstrip(", ").strip()
keys_keyword_match = re.search(r"keys\s*=\s*(.*)", args_str, re.DOTALL)
if keys_keyword_match:
keys_str = keys_keyword_match.group(1).strip()
if (keys_str.startswith("'") and keys_str.endswith("'")) or \
(keys_str.startswith('"') and keys_str.endswith('"')):
keys_str = keys_str[1:-1]
elif keys_str.startswith("[") and keys_str.endswith("]"):
keys_str = ast.literal_eval(keys_str)
keys = keys_str
elif args_str:
keys_str = args_str.strip()
if (keys_str.startswith("'") and keys_str.endswith("'")) or \
(keys_str.startswith('"') and keys_str.endswith('"')):
keys_str = keys_str[1:-1]
keys = keys_str
args["keys"] = keys
args["presses"] = presses
elif 'scroll' in func_name.lower():
clicks, x, y = None, None, None
if '=' in args_str:
kwargs = dict(re.findall(r'(\w+)\s*=\s*(-?\d+)', args_str))
clicks = int(kwargs.get('clicks')) if kwargs.get('clicks') is not None else None
x = int(kwargs.get('x')) if kwargs.get('x') is not None else None
y = int(kwargs.get('y')) if kwargs.get('y') is not None else None
elif args_str:
try:
clicks = int(args_str)
except ValueError:
pass
if clicks: args['clicks'] = clicks
if x: args['x'] = x
if y: args['y'] = y
else:
if "=" in args_str:
for arg in re.finditer(r"(\w+)=\[([^\]]+)\]", args_str):
param = arg.group(1)
list_str = arg.group(2)
list_items = []
for item in re.finditer(r"'([^']*)'|\"([^\"]*)\"|([^,\]]+)", list_str):
val = (item.group(1) or item.group(2) or item.group(3)).strip()
if val:
list_items.append(val.strip('"\''))
args[param] = list_items
for arg in re.finditer(r"(\w+)=([^,)]+)", args_str):
param = arg.group(1)
if param in args:
continue
value_str = arg.group(2).strip()
if value_str.isdigit():
value = int(value_str)
elif value_str.replace(".", "", 1).isdigit():
value = float(value_str)
elif value_str.lower() in ("true", "false"):
value = value_str.lower() == "true"
else:
value = value_str.strip('"\'')
args[param] = value
else:
args_list = []
for arg in re.finditer(r"'([^']*)'|\"([^\"]*)\"|([^,]+)", args_str):
val = (arg.group(1) or arg.group(2) or arg.group(3)).strip()
if val:
args_list.append(val.strip('"\''))
if args_list:
args["args"] = args_list
parsed_action.append({
'name': func_name,
'parameters': args
})
think, operation, actions = parse_response(output_text)
structured_actions = parse_actions(actions)
- Transform coordinates based on the resized image:
from qwen_vl_utils import smart_resize
resize_h, resize_w = smart_resize(image_height, image_width, min_pixels=min_pixels, max_pixels=max_pixels)
for action in actions
if 'x' in action['parameters'] :
x = "{:.4f}".format(float(x) / resize_w * image_width)
action['parameters']['x'] = x
if 'y' in action['parameters']
y = "{:.4f}".format(float(y) / resize_h * image_height)
action['parameters']['y'] = y
Citation
If you find our project useful in your research, please consider citing:
@article{liu2025scalecua,
title = {ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data},
author = {Liu, Zhaoyang and Xie, Jingjing and Ding, Zichen and Li, Zehao and Yang, Bowen and Wu, Zhenyu and Wang, Xuehui and Sun, Qiushi and Liu, Shi and Wang, Weiyun and Ye, Shenglong and Li, Qingyun and Dong, Xuan and Yu, Yue and Lu, Chenyu and Mo, YunXiang and Yan, Yao and Tian, Zeyue and Zhang, Xiao and Huang, Yuan and Liu, Yiqian and Su, Weijie and Luo, Gen and Yue, Xiangyu and Qi, Biqing and Chen, Kai and Zhou, Bowen and Qiao, Yu and Chen, Qifeng and Wang, Wenhai},
year = {2025},
url = {https://github.com/OpenGVLab/ScaleCUA}
}
- Downloads last month
- 30
Model tree for OpenGVLab/ScaleCUA-7B
Base model
Qwen/Qwen2.5-VL-7B-Instruct