|
import math |
|
from typing import List, Tuple, Optional, Dict |
|
import os |
|
|
|
import torch |
|
from torch import Tensor |
|
import numpy as np |
|
import PIL.Image |
|
import random |
|
from io import BytesIO |
|
import cv2 |
|
import numpy as np |
|
|
|
from torchvision.transforms import functional as F, InterpolationMode |
|
import torchvision.transforms as T |
|
|
|
__all__ = ["AutoAugmentPolicy", "AutoAugment", "RandAugment", "TrivialAugmentWide", "AugMix"] |
|
|
|
def get_dimensions(img): |
|
height, width = F.get_image_size(img) |
|
channels = F.get_image_num_channels(img) |
|
return channels, height, width |
|
|
|
def cutout(img, pad_size, replace=0): |
|
"""Apply cutout (https://arxiv.org/abs/1708.04552) to image. |
|
|
|
### (PyTorch implementation of Google's big_vision cutout) ### |
|
|
|
This operation applies a (2*pad_size x 2*pad_size) mask of zeros to |
|
a random location within `img`. The pixel values filled in will be of the |
|
value `replace`. The located where the mask will be applied is randomly |
|
chosen uniformly over the whole image. |
|
Args: |
|
image: A PIL image |
|
pad_size: Specifies how big the zero mask that will be generated is that |
|
is applied to the image. The mask will be of size |
|
(2*pad_size x 2*pad_size). |
|
replace: What pixel value to fill in the image in the area that has |
|
the cutout mask applied to it. |
|
Returns: |
|
A PIL image of type uint8. |
|
""" |
|
convert_back=False |
|
if F._is_pil_image(img): |
|
img = F.pil_to_tensor(img) |
|
convert_back=True |
|
assert img.dtype == torch.uint8, "PIL to tensor image is expected to have torch.unit8 as dtype." |
|
channels, height, width = get_dimensions(img) |
|
cutout_center_height = torch.randint(low=0, high=height, size=(1,)).item() |
|
cutout_center_width = torch.randint(low=0, high=width, size=(1,)).item() |
|
|
|
lower_pad = max(0, cutout_center_height - pad_size) |
|
upper_pad = max(0, height - cutout_center_height - pad_size) |
|
left_pad = max(0, cutout_center_width - pad_size) |
|
right_pad = max(0, width - cutout_center_width - pad_size) |
|
|
|
cutout_shape = (height - (lower_pad + upper_pad), |
|
width - (left_pad + right_pad)) |
|
padding_dims = (left_pad, right_pad, upper_pad, lower_pad) |
|
cutout_mask = torch.nn.functional.pad( |
|
torch.zeros(cutout_shape, dtype=img.dtype, device=img.device), |
|
padding_dims, value=1 |
|
) |
|
cutout_mask = cutout_mask.unsqueeze(dim=0) |
|
cutout_mask = torch.tile(cutout_mask, (channels,1,1)) |
|
|
|
|
|
img = torch.where( |
|
cutout_mask==0, |
|
torch.ones_like(img, dtype=img.dtype, device=img.device) * replace, |
|
|
|
img |
|
) |
|
if convert_back: |
|
return F.to_pil_image(img) |
|
else: |
|
return img |
|
|
|
def solarize_add(img, addition=0, threshold=128): |
|
""" |
|
For each pixel in the image less than threshold |
|
we add 'addition' amount to it and then clip the |
|
pixel value to be between 0 and 255. The value |
|
of 'addition' is between -128 and 128. |
|
|
|
### Re-implementation of Google's big_vision in PyTorch ### |
|
""" |
|
convert_back=False |
|
if F._is_pil_image(img): |
|
img = F.pil_to_tensor(img) |
|
convert_back=True |
|
assert img.dtype == torch.uint8, "PIL to tensor image is expected to have torch.unit8 as dtype." |
|
added_img = img.to(torch.int) + addition |
|
added_img = torch.clamp(added_img, min=0,max=255) |
|
added_img = added_img.to(img.dtype) |
|
img = torch.where( |
|
img < threshold, |
|
added_img, |
|
img |
|
) |
|
if convert_back: |
|
return F.to_pil_image(img) |
|
else: |
|
return img |
|
|
|
def chroma_drop(img): |
|
img = img.convert("YCbCr") |
|
Y, Cb, Cr = img.split() |
|
if torch.rand(1).item() > 0.5: |
|
Cr = Cr.point(lambda i: 128) |
|
else: |
|
Cb = Cb.point(lambda i: 128) |
|
img = PIL.Image.merge("YCbCr", (Y, Cb, Cr)) |
|
return img.convert("RGB") |
|
|
|
def auto_saturation_separate(img): |
|
img = img.convert("YCbCr") |
|
Y, Cb, Cr = img.split() |
|
Cbmin, Cbmax = Cb.getextrema() |
|
Crmin, Crmax = Cr.getextrema() |
|
Cmin = min(Cbmin, Crmin) |
|
Cmax = max(Cbmax, Crmax) |
|
Cb = Cb.point(lambda i: ((i-128) / (Cmax - 128) * 127 + 128 if Cmax > 128 else i) if i>127 \ |
|
else ((i - Cmin) / (127 - Cmin) * 127) if Cmin<127 else i) |
|
|
|
Cr = Cr.point(lambda i: ((i-128) / (Cmax - 128) * 127 + 128 if Cmax > 128 else i) if i>127 \ |
|
else ((i - Cmin) / (127 - Cmin) * 127) if Cmin<127 else i) |
|
|
|
img = PIL.Image.merge("YCbCr", (Y, Cb, Cr)) |
|
return img.convert("RGB") |
|
|
|
|
|
def auto_saturation(img): |
|
img = img.convert("YCbCr") |
|
Y, Cb, Cr = img.split() |
|
Cbmin, Cbmax = Cb.getextrema() |
|
Crmin, Crmax = Cr.getextrema() |
|
Cmin = min(Cbmin, Crmin) |
|
Cmax = max(Cbmax, Crmax) |
|
Cb = Cb.point(lambda i: (i-Cmin) / (Cmax - Cmin) * 255 if (Cmax - Cmin) != 0 else i) |
|
Cr = Cr.point(lambda i: (i-Cmin) / (Cmax - Cmin) * 255 if (Cmax - Cmin) != 0 else i) |
|
img = PIL.Image.merge("YCbCr", (Y, Cb, Cr)) |
|
return img.convert("RGB") |
|
|
|
def _apply_op( |
|
img: Tensor, op_name: str, magnitude: float, interpolation: InterpolationMode, fill: Optional[List[float]] |
|
): |
|
if op_name == "ShearX": |
|
|
|
|
|
|
|
|
|
|
|
|
|
img = F.affine( |
|
img, |
|
angle=0.0, |
|
translate=[0, 0], |
|
scale=1.0, |
|
shear=[math.degrees(math.atan(magnitude)), 0.0], |
|
interpolation=interpolation, |
|
fill=fill, |
|
center=[0, 0], |
|
) |
|
elif op_name == "ShearY": |
|
|
|
|
|
img = F.affine( |
|
img, |
|
angle=0.0, |
|
translate=[0, 0], |
|
scale=1.0, |
|
shear=[0.0, math.degrees(math.atan(magnitude))], |
|
interpolation=interpolation, |
|
fill=fill, |
|
center=[0, 0], |
|
) |
|
elif op_name == "TranslateX": |
|
img = F.affine( |
|
img, |
|
angle=0.0, |
|
translate=[int(magnitude), 0], |
|
scale=1.0, |
|
interpolation=interpolation, |
|
shear=[0.0, 0.0], |
|
fill=fill, |
|
) |
|
elif op_name == "TranslateY": |
|
img = F.affine( |
|
img, |
|
angle=0.0, |
|
translate=[0, int(magnitude)], |
|
scale=1.0, |
|
interpolation=interpolation, |
|
shear=[0.0, 0.0], |
|
fill=fill, |
|
) |
|
elif op_name == "Rotate": |
|
img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill) |
|
elif op_name == "Brightness": |
|
img = F.adjust_brightness(img, 1.0 + magnitude) |
|
elif op_name == "Color": |
|
img = F.adjust_saturation(img, 1.0 + magnitude) |
|
elif op_name == "Contrast": |
|
img = F.adjust_contrast(img, 1.0 + magnitude) |
|
elif op_name == "Sharpness": |
|
img = F.adjust_sharpness(img, 1.0 + magnitude) |
|
elif op_name == "Posterize": |
|
img = F.posterize(img, int(magnitude)) |
|
elif op_name == "Solarize": |
|
img = F.solarize(img, magnitude) |
|
elif op_name == "AutoContrast": |
|
img = F.autocontrast(img) |
|
elif op_name == "Equalize": |
|
img = F.equalize(img) |
|
elif op_name == "Invert": |
|
img = F.invert(img) |
|
elif op_name == "Identity": |
|
pass |
|
elif op_name == 'Cutout': |
|
img = cutout(img, int(magnitude), replace=fill) |
|
elif op_name == "SolarizeAdd": |
|
img = solarize_add(img, int(magnitude)) |
|
elif op_name == "Grayscale": |
|
img = F.to_grayscale(img, num_output_channels=3) |
|
elif op_name == "ChromaDrop": |
|
img = chroma_drop(img) |
|
elif op_name == "AutoSaturation": |
|
|
|
img = auto_saturation(img) |
|
elif op_name == "AutoSaturation_old": |
|
img = auto_saturation(img) |
|
elif op_name == "Rotate90": |
|
img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill) |
|
else: |
|
raise ValueError(f"The provided operator {op_name} is not recognized.") |
|
return img |
|
|
|
|
|
|
|
class RandAugment_bv(torch.nn.Module): |
|
r"""RandAugment data augmentation method based on |
|
`"RandAugment: Practical automated data augmentation with a reduced search space" |
|
<https://arxiv.org/abs/1909.13719>`_. |
|
|
|
### Re-implementation of Google's Big Vision randaugment in PyTorch ### |
|
|
|
If the image is torch Tensor, it should be of type torch.uint8, and it is expected |
|
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions. |
|
If img is PIL Image, it is expected to be in mode "L" or "RGB". |
|
|
|
Args: |
|
num_ops (int): Number of augmentation transformations to apply sequentially. |
|
magnitude (int): Magnitude for all the transformations. |
|
num_magnitude_bins (int): The number of different magnitude values. |
|
interpolation (InterpolationMode): Desired interpolation enum defined by |
|
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. |
|
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. |
|
fill (sequence or number, optional): Pixel fill value for the area outside the transformed |
|
image. If given a number, the value is used for all bands respectively. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_ops: int = 2, |
|
magnitude: int = 10, |
|
num_magnitude_bins: int = 11, |
|
interpolation: InterpolationMode = InterpolationMode.NEAREST, |
|
fill: Optional[List[float]] = None, |
|
ops_list = ["AutoContrast", "Equalize", "Invert", "Rotate", "Posterize", "Solarize", "SolarizeAdd", "Color", "Contrast", "Brightness", |
|
"Sharpness", "ShearX", "ShearY", "Cutout", "TranslateX", "TranslateY"] |
|
) -> None: |
|
super().__init__() |
|
self.num_ops = num_ops |
|
self.magnitude = magnitude |
|
self.num_magnitude_bins = num_magnitude_bins |
|
self.interpolation = interpolation |
|
self.fill = fill |
|
if ops_list==None: |
|
self.ops_list = ["AutoContrast", "Equalize", "Invert", "Rotate", "Posterize", "Solarize", "SolarizeAdd", "Color", "Contrast", "Brightness", |
|
"Sharpness", "ShearX", "ShearY", "Cutout", "TranslateX", "TranslateY"] |
|
else: |
|
self.ops_list = ops_list |
|
|
|
def _augmentation_space(self, num_bins: int, image_size: Tuple[int, int]) -> Dict[str, Tuple[Tensor, bool]]: |
|
return { |
|
|
|
|
|
"AutoContrast": (torch.tensor(0.0), False), |
|
"Equalize": (torch.tensor(0.0), False), |
|
"Invert": (torch.tensor(0.0), False), |
|
"Rotate": (torch.linspace(0.0, 30.0, num_bins), True), |
|
"Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False), |
|
"Solarize": (torch.linspace(255.0, 0.0, num_bins), False), |
|
"SolarizeAdd": (torch.linspace(0, 110, num_bins), False), |
|
"Color": (torch.linspace(0.0, 0.9, num_bins), True), |
|
"Contrast": (torch.linspace(0.0, 0.9, num_bins), True), |
|
"Brightness": (torch.linspace(0.0, 0.9, num_bins), True), |
|
"Sharpness": (torch.linspace(0.0, 0.9, num_bins), True), |
|
"ShearX": (torch.linspace(0.0, 0.3, num_bins), True), |
|
"ShearY": (torch.linspace(0.0, 0.3, num_bins), True), |
|
"Cutout": (torch.linspace(0, 40, num_bins), False), |
|
"TranslateX": (torch.linspace(0.0, 150.0 / 336.0 * image_size[1], num_bins), True), |
|
"TranslateY": (torch.linspace(0.0, 150.0 / 336.0 * image_size[0], num_bins), True), |
|
"Grayscale": (torch.tensor(0.0), False), |
|
"ChromaDrop": (torch.tensor(0.0), False), |
|
"AutoSaturation": (torch.tensor(0.0), False), |
|
"AutoSaturation_old": (torch.tensor(0.0), False), |
|
"Rotate90": (torch.tensor(90.0), True), |
|
} |
|
|
|
|
|
def forward(self, img: Tensor) -> Tensor: |
|
""" |
|
img (PIL Image or Tensor): Image to be transformed. |
|
|
|
Returns: |
|
PIL Image or Tensor: Transformed image. |
|
""" |
|
fill = self.fill |
|
channels, height, width = get_dimensions(img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
op_meta = self._augmentation_space(self.num_magnitude_bins, (height, width)) |
|
for _ in range(self.num_ops): |
|
op_index = int(torch.randint(len(self.ops_list), (1,)).item()) |
|
op_name = list(self.ops_list)[op_index] |
|
magnitudes, signed = op_meta[op_name] |
|
magnitude = float(magnitudes[self.magnitude].item()) if magnitudes.ndim > 0 else 0.0 |
|
if signed and torch.randint(2, (1,)): |
|
magnitude *= -1.0 |
|
img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill) |
|
|
|
return img |
|
|
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f"num_ops={self.num_ops}" |
|
f", magnitude={self.magnitude}" |
|
f", num_magnitude_bins={self.num_magnitude_bins}" |
|
f", interpolation={self.interpolation}" |
|
f", fill={self.fill}" |
|
f")" |
|
) |
|
return s |
|
|
|
|
|
class ToTensor_range(torch.nn.Module): |
|
r""" |
|
Converts PIL image to Tensor into a specified range |
|
|
|
Args: |
|
val_min = minimum value after convert |
|
val_max = maximum value after convert |
|
dtype = dtype after convert (default=torch.float32) |
|
|
|
Returns: |
|
Converted Torch Tensor |
|
""" |
|
|
|
def __init__( |
|
self, |
|
val_min: float = -1., |
|
val_max: float = 1., |
|
dtype = torch.float32, |
|
) -> Tensor: |
|
super().__init__() |
|
self.val_min = val_min |
|
self.val_max = val_max |
|
self.dtype = dtype |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
img (PIL Image): Image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
|
|
if F._is_pil_image(img): |
|
img = F.to_tensor(img) |
|
img = img.to(self.dtype) |
|
img = self.val_min + (img * (self.val_max - self.val_min)) |
|
|
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f"val_min={self.val_min}" |
|
f", val_max={self.val_max}" |
|
f", dtype={self.dtype}" |
|
f")" |
|
) |
|
return s |
|
|
|
def apply_PILJPEG(img, quality): |
|
buffer = BytesIO() |
|
img.save(buffer, format="JPEG", quality=quality) |
|
buffer.seek(0) |
|
img = PIL.Image.open(buffer).convert("RGB") |
|
return img |
|
|
|
def apply_cv2JPEG(img, quality): |
|
|
|
img_cv2 = np.array(img) |
|
img_cv2 = img_cv2[:,:,::-1] |
|
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality] |
|
result, encimg = cv2.imencode('.jpg', img_cv2, encode_param) |
|
decimg = cv2.imdecode(encimg, 1) |
|
return PIL.Image.fromarray(decimg[:,:,::-1]) |
|
|
|
def apply_randomJPEG(img, quality): |
|
if random.random() < 0.5: |
|
img = apply_PILJPEG(img, quality) |
|
else: |
|
img = apply_cv2JPEG(img, quality) |
|
return img |
|
|
|
def resize_with_random_intpl(img, size): |
|
""" |
|
Perform resizing with random interpolation |
|
""" |
|
|
|
intp_list = [InterpolationMode.BILINEAR, InterpolationMode.BICUBIC] |
|
|
|
interp = random.choice(intp_list) |
|
|
|
img = F.resize(img, size, interpolation=interp) |
|
return img |
|
|
|
class RandomResizeWithRandomIntpl(torch.nn.Module): |
|
r""" |
|
Reads PIL Image. Resizes with random interpolation. Returns torch tensor. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size_range: int=(112,448), |
|
) -> Tensor: |
|
super().__init__() |
|
self.size_range = size_range |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (RandomResizeWithRandomIntpl transform)" |
|
|
|
img = resize_with_random_intpl(img, random.randint(self.size_range[0], self.size_range[1])) |
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}()" |
|
f" size_range={self.size_range}" |
|
f")" |
|
) |
|
|
|
class ResizeWithRandomIntpl(torch.nn.Module): |
|
r""" |
|
Reads PIL Image. Resizes with random interpolation. Returns torch tensor. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
) -> Tensor: |
|
super().__init__() |
|
self.size = size |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (ResizeWithRandomIntpl transform)" |
|
|
|
img = resize_with_random_intpl(img, self.size) |
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f" size={self.size}" |
|
f")" |
|
) |
|
return s |
|
|
|
class RRCWithRandomIntpl(T.RandomResizedCrop): |
|
r""" |
|
Reads PIL Image. Randomly resized crop with random interpolation. Returns torch tensor. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
scale: Tuple[float, float] = (0.08, 1.0), |
|
ratio: Tuple[float, float] = (3./4., 4./3.), |
|
) -> Tensor: |
|
super().__init__(size=size, scale=scale, ratio=ratio) |
|
self.size = size |
|
self.scale = scale |
|
self.ratio = ratio |
|
self.intp_list=[InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC, InterpolationMode.LANCZOS, InterpolationMode.HAMMING, InterpolationMode.BOX] |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (RRCWithRandomIntpl transform)" |
|
|
|
i, j, h, w = self.get_params(img, self.scale, self.ratio) |
|
|
|
interp = random.choice(self.intp_list) |
|
return F.resized_crop(img, i, j, h, w, self.size, interpolation=interp) |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f" size={self.size}" |
|
f", scale={self.scale}" |
|
f", ratio={self.ratio}" |
|
f")" |
|
) |
|
return s |
|
|
|
class JPEGinMemory(torch.nn.Module): |
|
r""" |
|
Reads PIL Image. Compress JPEG in memory. Returns PIL Image. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
quality_range = (30, 100), |
|
method: str = "cv,pil", |
|
dtype = torch.float32, |
|
) -> Tensor: |
|
super().__init__() |
|
self.quality_range = quality_range |
|
self.method = method.lower().split(',') |
|
self.dtype = dtype |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed.jdt |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (ResizeAndJPEGinMemory transform)" |
|
if "cv" in self.method and "pil" in self.method: |
|
img = apply_randomJPEG(img, random.randint(self.quality_range[0], self.quality_range[1])) |
|
elif "cv" in self.method: |
|
img = apply_cv2JPEG(img, random.randint(self.quality_range[0], self.quality_range[1])) |
|
elif "pil" in self.method: |
|
img = apply_PILJPEG(img, random.randint(self.quality_range[0], self.quality_range[1])) |
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f", quality_range={self.quality_range}" |
|
f", dtype={self.dtype}" |
|
f")" |
|
) |
|
return s |
|
|
|
class ResizeAndJPEGinMemory(torch.nn.Module): |
|
r""" |
|
Reads PIL Image. Resizes and compresses to JPEG in memory. Returns torch tensor. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
quality: int = 95, |
|
method: str = "cv,pil", |
|
dtype = torch.float32, |
|
) -> Tensor: |
|
super().__init__() |
|
self.size = size |
|
self.quality = quality |
|
self.method = method.lower().split(',') |
|
self.dtype = dtype |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (ResizeAndJPEGinMemory transform)" |
|
|
|
img = F.resize(img, self.size, interpolation=InterpolationMode.BILINEAR) |
|
if "cv" in self.method and "pil" in self.method: |
|
img = apply_randomJPEG(img, self.quality) |
|
elif "cv" in self.method: |
|
img = apply_cv2JPEG(img, self.quality) |
|
elif "pil" in self.method: |
|
img = apply_PILJPEG(img, self.quality) |
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f" size={self.size}" |
|
f", quality={self.quality}" |
|
f", dtype={self.dtype}" |
|
f")" |
|
) |
|
return s |
|
|
|
class StochasticJPEG(torch.nn.Module): |
|
r""" |
|
Stochastically applies multiple JPEG compression and resizing to an image. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
quality: Tuple[int, int] = (50, 100), |
|
num_jpeg: Tuple[int, int] = (1, 5), |
|
jpeg_p: float = 0.5, |
|
rrc_p: float = 0.5, |
|
rrc_scale: Tuple[float, float] = (0.75, 1.0), |
|
rrc_ratio: Tuple[float, float] = (3./4., 4./3.), |
|
no_rrc: bool = False, |
|
dtype: type = torch.float32, |
|
) -> Tensor: |
|
""" |
|
Initialize the CustomTransforms class. |
|
|
|
Args: |
|
size (int): The final output size. |
|
quality (Tuple[int, int]): The quality range as a tuple of two integers. |
|
num_jpeg (Tuple[int, int]): The number of jpegs to apply as a tuple of two integers. |
|
p (float): The probability of applying the transform. |
|
rrc_scale (Tuple[float, float]): The random resize crop scale as a tuple of two floats. |
|
rrc_ratio (Tuple[float, float]): The random resize crop ratio as a tuple of two floats. |
|
no_rrc (bool): If True, no random resized crop is applied. |
|
dtype (type): The data type of the tensor. |
|
|
|
Returns: |
|
Tensor: The initialized CustomTransforms object. |
|
""" |
|
super().__init__() |
|
self.size = size |
|
self.quality = quality |
|
self.num_jpeg = num_jpeg |
|
self.jpeg_p = jpeg_p |
|
self.rrc_p = rrc_p |
|
self.rrc = torch.nn.Identity() if no_rrc else T.RandomResizedCrop(size=size, scale=rrc_scale, ratio=rrc_ratio, interpolation=InterpolationMode.BILINEAR) |
|
self.dtype = dtype |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (StochasticJPEG transform)" |
|
|
|
|
|
count = self.num_jpeg[0] |
|
for _ in range(self.num_jpeg[0]): |
|
img = self.rrc(img) |
|
img = apply_randomJPEG(img, random.randint(self.quality[0], self.quality[1])) |
|
|
|
while count < self.num_jpeg[1]: |
|
if random.random() < self.p: |
|
img = self.rrc(img) |
|
img = apply_randomJPEG(img, random.randint(self.quality[0], self.quality[1])) |
|
count += 1 |
|
else: |
|
break |
|
|
|
return img |
|
|
|
class RandomJPEG(torch.nn.Module): |
|
""" |
|
Randomly applies JPEG |
|
Args: |
|
quality: tuple of quality value range for JPEG |
|
p: probability of applying JPEG |
|
""" |
|
def __init__( |
|
self, |
|
quality_list: tuple = (30, 100), |
|
p: float = 0.5, |
|
): |
|
super().__init__() |
|
self.quality_list = quality_list |
|
self.p = p |
|
|
|
def forward(self, img): |
|
if random.random() < self.p: |
|
img = apply_randomJPEG(img, random.randint(self.quality_list[0], self.quality_list[1])) |
|
return img |
|
|
|
class RandomGaussianBlur(torch.nn.Module): |
|
""" |
|
Randomly applies Gaussian Blur |
|
Args: |
|
p: probability of applying JPEG |
|
sigma: tuple of sigma values for Gaussian Blur |
|
""" |
|
def __init__( |
|
self, |
|
p: float = 0.5, |
|
sigma: Tuple[float, float] = (0.0, 3.0), |
|
): |
|
super().__init__() |
|
self.p = p |
|
self.sigma = sigma |
|
|
|
def forward(self, img): |
|
if random.random() < self.p: |
|
sigma=random.uniform(self.sigma[0], self.sigma[1]) |
|
kernel_size=1+2*round(sigma*4.0) |
|
img = F.gaussian_blur(img, kernel_size=kernel_size, sigma=sigma) |
|
return img |
|
|
|
class RandomPaddingAndResize(torch.nn.Module): |
|
r""" |
|
Reads PIL Image. Randomly applies padding, and resize it back to original resolution. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
pad_percentage_range = (0.1, 0.1), |
|
padding_value_range = (0, 255), |
|
) -> Tensor: |
|
super().__init__() |
|
self.pad_percentage_range = pad_percentage_range |
|
self.padding_value_range = padding_value_range |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed.jdt |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (ResizeAndJPEGinMemory transform)" |
|
original_size = img.size |
|
pad_x_l = random.uniform(0, self.pad_percentage_range[0]/2) |
|
pad_x_r = random.uniform(0, self.pad_percentage_range[0]/2) |
|
pad_y_l = random.uniform(0, self.pad_percentage_range[1]/2) |
|
pad_y_r = random.uniform(0, self.pad_percentage_range[1]/2) |
|
pad_fill = random.randint(int(self.padding_value_range[0]), int(self.padding_value_range[1])) |
|
img = F.pad(img, (int(pad_x_l*img.size[0]), int(pad_y_l*img.size[1]), int(pad_x_r*img.size[0]), int(pad_y_r*img.size[1])), fill=pad_fill, padding_mode='constant') |
|
img = F.resize(img, original_size, interpolation=InterpolationMode.BILINEAR) |
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f", pad_percentage_range={self.pad_percentage_range}" |
|
f", padding_value_range={self.padding_value_range}" |
|
f")" |
|
) |
|
return s |
|
|
|
class RandomCutout(T.RandomErasing): |
|
r""" |
|
Random cutout with random numbers |
|
""" |
|
def __init__( |
|
self, |
|
p=0.5, |
|
scale=(0.02, 0.33), |
|
ratio=(0.3, 3.3), |
|
value_range=(0, 255), |
|
): |
|
super().__init__(p=p, scale=scale, ratio=ratio) |
|
self.value_range = value_range |
|
|
|
def forward(self, img): |
|
convert_to_pil=False |
|
if F._is_pil_image(img): |
|
img = F.pil_to_tensor(img) |
|
convert_to_pil=True |
|
if torch.rand(1) < self.p: |
|
rand_value = random.randint(self.value_range[0], self.value_range[1]) |
|
|
|
if isinstance(rand_value, (int, float)): |
|
rand_value = [float(rand_value)] |
|
elif isinstance(rand_value, str): |
|
rand_value = None |
|
elif isinstance(rand_value, (list, tuple)): |
|
rand_value = [float(v) for v in rand_value] |
|
else: |
|
rand_value = rand_value |
|
|
|
if rand_value is not None and not (len(rand_value) in (1, img.shape[-3])): |
|
raise ValueError( |
|
"If value is a sequence, it should have either a single value or " |
|
f"{img.shape[-3]} (number of input channels)" |
|
) |
|
x, y, h, w, v = self.get_params(img, self.scale, self.ratio, rand_value) |
|
img = F.erase(img, x, y, h, w, v) |
|
if convert_to_pil: |
|
img = F.to_pil_image(img) |
|
return img |
|
|
|
class RandomVisualization(torch.nn.Module): |
|
r""" |
|
Randomly visualizes the fully augmented images by saving them at a specified directory. |
|
""" |
|
def __init__( |
|
self, |
|
save_dir: str = "/nfs/turbo/coe-ahowens-nobackup/jespark/visualizations/fake_img", |
|
save_p: float = 0.01, |
|
max_imgs: int = 500, |
|
overwrite: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.save_dir = save_dir |
|
self.save_p = save_p |
|
self.max_imgs = max_imgs |
|
self.overwrite = overwrite |
|
self.skip_namecheck=False |
|
|
|
def next_available_filename(self, save_dir, max_imgs): |
|
|
|
|
|
|
|
imgs = os.listdir(save_dir) |
|
imgs_list = [int(img.split("_")[-1].split(".")[0]) for img in imgs] |
|
random_int = random.randint(0, 999) |
|
if len(imgs_list) >= max_imgs: |
|
if self.overwrite: |
|
return random.choice(imgs) |
|
else: |
|
self.skip_namecheck=True |
|
return False |
|
elif len(imgs_list) > 0: |
|
next_int = max(imgs_list) + 1 |
|
return f"visualization_{next_int}_{random_int:03d}.png" |
|
elif len(imgs_list) == 0: |
|
return f"visualization_0_{random_int:03d}.png" |
|
else: |
|
raise ValueError("Error in next_available_filename") |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
if not self.skip_namecheck: |
|
if random.random() < self.save_p: |
|
os.makedirs(self.save_dir, exist_ok=True) |
|
filename = self.next_available_filename(self.save_dir, self.max_imgs) |
|
if filename: |
|
img.save(os.path.join(self.save_dir, filename)) |
|
return img |
|
|
|
class RandomStateAugmentation(torch.nn.Module): |
|
r""" |
|
Randomly applies augmentations given in the input |
|
""" |
|
def __init__( |
|
self, |
|
resize_size=256, |
|
crop_size=224, |
|
auglist="JPEGinMemory,RandomResizeWithRandomIntpl,RandomCrop,RandomHorizontalFlip,RandomVerticalFlip,RRCWithRandomIntpl,RandomRotation,RandomTranslate,RandomShear,RandomPadding", |
|
min_augs='0', |
|
max_augs='5', |
|
): |
|
""" |
|
auglist: augmentation lists to apply. Input comma-separated string of augmentations. |
|
min_augs: minimum number of augmentations to apply. (can be comma-separated string to denote per-augmentation minimum) |
|
max_augs: maximum number of augmentations to apply. (can be comma-separated string to denote per-augmentation maximum) |
|
""" |
|
super().__init__() |
|
self.resize_size=resize_size |
|
self.crop_size=crop_size |
|
|
|
self.auglist = self.parse_auglist(auglist) |
|
|
|
min_augs = self.parse_augnums(min_augs) |
|
max_augs = self.parse_augnums(max_augs) |
|
if type(min_augs) == list: |
|
assert type(max_augs) == list, "max_augs should be list if min_augs is list." |
|
assert len(min_augs) == len(auglist), "min_augs length should be equal to auglist length." |
|
assert len(max_augs) == len(auglist), "max_augs length should be equal to auglist length." |
|
|
|
self.min_augs = [min_augs] * len(self.auglist) if type(min_augs) != list else min_augs |
|
self.max_augs = [max_augs] * len(self.auglist) if type(max_augs) != list else max_augs |
|
|
|
def parse_augnums(self, augsnum): |
|
|
|
augsnum_list = augsnum.split(",") |
|
if len(augsnum_list) == 1: |
|
return int(augsnum_list[0]) |
|
else: |
|
return [int(aug) for aug in augsnum_list] |
|
|
|
|
|
def parse_auglist(self, auglist): |
|
|
|
|
|
auglist_list = auglist.split(",") |
|
parsed_list = torch.nn.ModuleList() |
|
for aug_name in auglist_list: |
|
if aug_name=='singleJPEG': |
|
parsed_list.append(ResizeAndJPEGinMemory(size=self.crop_size, quality=95, dtype=torch.float32)) |
|
if aug_name=='StochasticJPEG': |
|
parsed_list.append(StochasticJPEG(size=self.crop_size, quality=(75, 100), num_jpeg=(1, 5), jpeg_p=0.5, rrc_p=0.5, rrc_scale=(0.75, 1.0), rrc_ratio=(3./4., 4./3.), no_rrc=False, dtype=torch.float32)) |
|
if aug_name=='JPEGinMemory': |
|
parsed_list.append(JPEGinMemory(quality_range=(75, 100), dtype=torch.float32)) |
|
if aug_name=='RandomResizeWithRandomIntpl': |
|
parsed_list.append(RandomResizeWithRandomIntpl(size_range=(self.crop_size+1,round(self.crop_size*1.228)))) |
|
if aug_name=='RandomCrop': |
|
parsed_list.append(T.RandomCrop(self.crop_size)) |
|
if aug_name=='RandomHorizontalFlip': |
|
parsed_list.append(T.RandomHorizontalFlip()) |
|
if aug_name=='RandomVerticalFlip': |
|
parsed_list.append(T.RandomVerticalFlip()) |
|
if aug_name=='RRCWithRandomIntpl': |
|
parsed_list.append(RRCWithRandomIntpl(size=self.crop_size, scale=(0.9, 1.0), ratio=(3./4., 4./3.))) |
|
if aug_name=='RandomRotation': |
|
parsed_list.append(T.RandomRotation(15, interpolation=InterpolationMode.BILINEAR)) |
|
if aug_name=='RandomTranslate': |
|
parsed_list.append(T.RandomAffine(degrees=0, translate=(0.1, 0.1), scale=None, shear=None, interpolation=InterpolationMode.BILINEAR)) |
|
if aug_name=='RandomShear': |
|
parsed_list.append(T.RandomAffine(degrees=0, translate=None, scale=None, shear=(-15, 15, -15, 15), interpolation=InterpolationMode.BILINEAR)) |
|
if aug_name=='RandomPadding' or aug_name=='RandomPaddingAndResize': |
|
parsed_list.append(RandomPaddingAndResize(pad_percentage_range=(0.1, 0.1), padding_value_range=(0, 255))) |
|
if aug_name=='RandomCutout': |
|
parsed_list.append(RandomCutout(p=0.5, scale=(0.02, 0.06), ratio=(0.3, 3.3), value_range=(0, 255))) |
|
|
|
return parsed_list |
|
|
|
def generate_randAug_counts(self): |
|
|
|
per_aug_counts = [0] * len(self.auglist) |
|
for i in range(len(per_aug_counts)): |
|
per_aug_counts[i] = random.randint(self.min_augs[i], self.max_augs[i]) |
|
return per_aug_counts |
|
|
|
def convert_aug_counts_to_idxList(self, per_aug_counts): |
|
|
|
idxList = [] |
|
for i in range(len(per_aug_counts)): |
|
idxList += [i] * per_aug_counts[i] |
|
return idxList |
|
|
|
def check_if_complete(self, count, min_augs): |
|
|
|
if type(min_augs) == list: |
|
min_augs_list = min_augs |
|
else: |
|
min_augs_list = [min_augs] * len(self.auglist) |
|
for i in range(len(min_augs_list)): |
|
if count[i] < min_augs_list[i]: |
|
return False |
|
return True |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
assert F._is_pil_image(img), "Input should be a PIL image (RandomStateAugmentation transform)" |
|
|
|
|
|
|
|
idxList = self.convert_aug_counts_to_idxList(self.generate_randAug_counts()) |
|
|
|
while len(idxList) > 0: |
|
randomIdx = idxList.pop(random.randint(0, len(idxList)-1)) |
|
img = self.auglist[randomIdx](img) |
|
|
|
|
|
return img |
|
|
|
class RandomSignRotation(torch.nn.Module): |
|
r""" |
|
Randomly rotates the image by given angle. Randomly changes sign. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
angle: int, |
|
interpolation: InterpolationMode = InterpolationMode.BILINEAR, |
|
) -> Tensor: |
|
super().__init__() |
|
self.angle = angle |
|
self.interpolation = interpolation |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
if random.random() < 0.5: |
|
angle = -self.angle |
|
else: |
|
angle = self.angle |
|
img = F.rotate(img, angle, interpolation=self.interpolation) |
|
return img |
|
|
|
def __repr__(self) -> str: |
|
s = ( |
|
f"{self.__class__.__name__}(" |
|
f" angle={self.angle}" |
|
f", interpolation={self.interpolation}" |
|
f")" |
|
) |
|
return s |
|
|
|
class RandomResize(torch.nn.Module): |
|
r""" |
|
Randomly resizes the input. Either up or downsample and then return it to the original size. Arguments take percentage of resizing (e.g., 0.3 means it can be downsized or upsampled by 30%) |
|
""" |
|
def __init__( |
|
self, |
|
resize_percentage: float, |
|
interpolation: InterpolationMode = InterpolationMode.BILINEAR, |
|
) -> Tensor: |
|
super().__init__() |
|
self.resize_percentage = resize_percentage |
|
self.interpolation = interpolation |
|
|
|
def forward(self, img) -> Tensor: |
|
""" |
|
Args: |
|
img: PIL image to be transformed. |
|
|
|
Returns: |
|
Tensor: Converted Image |
|
""" |
|
if random.random() < 0.5: |
|
resize_percentage = 1.0 - self.resize_percentage |
|
else: |
|
resize_percentage = 1.0 + self.resize_percentage |
|
original_size_1, original_size_0 = img.size |
|
img = F.resize(img, (int(original_size_0*resize_percentage), int(original_size_1*resize_percentage)), interpolation=self.interpolation) |
|
img = F.resize(img, (original_size_0, original_size_1), interpolation=self.interpolation) |
|
return img |
|
|
|
|