perceive-phaseformer / phaseformer.py
SheatsToTheWind's picture
🧠 Add complete launch kit with protected core and demo
7389710
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class PhaseFormerTransformerLayer(nn.Module):
"""
Transformer layer with phase-based temporal gating applied
to attention and feed-forward residual paths.
Args:
d_model (int): Input/output dimension.
nhead (int): Number of attention heads.
dim_feedforward (int): FFN hidden layer size.
dropout (float): Dropout probability.
decay_rate (float): Decay coefficient lambda.
"""
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, decay_rate=0.1):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.decay_rate = decay_rate
self.phase_proj = nn.Linear(d_model, d_model)
def forward(self, src, t: float):
D_t = math.exp(-self.decay_rate * t)
phase = self.phase_proj(src)
g = D_t * torch.sin(phase)
attn_out, _ = self.self_attn(src, src, src)
src2 = self.norm1(src + g * attn_out)
ff = self.linear2(self.dropout(F.relu(self.linear1(src2))))
return self.norm2(src2 + g * ff)