MBERT-Clinc

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1834
  • Accuracy: 0.9681
  • F1: 0.9677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.5635 0.4193 200 0.4160 0.8932 0.8911
0.2762 0.8386 400 0.2421 0.9387 0.9371
0.1315 1.2579 600 0.3010 0.9390 0.9376
0.0801 1.6771 800 0.2305 0.9552 0.9547
0.0736 2.0964 1000 0.2306 0.9577 0.9573
0.0288 2.5157 1200 0.2389 0.9545 0.9532
0.0159 2.9350 1400 0.1933 0.9661 0.9656
0.0069 3.3543 1600 0.1857 0.9652 0.9648
0.0062 3.7736 1800 0.1807 0.9677 0.9674
0.0061 4.1929 2000 0.1841 0.9674 0.9671
0.0011 4.6122 2200 0.1834 0.9681 0.9677

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
36
Safetensors
Model size
0.4B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Petri99/MBERT-Clinc

Finetuned
(220)
this model