Programmer-RD-AI's picture
Update README.md
d00b559 verified
---
license: cc
language:
- en
base_model:
- Qwen/Qwen2.5-3B
tags:
- qwen2
- qwen
- text-generation
- question-answering
- research
- engineering
- lora
- 4bit
- bitsandbytes
- faiss
- rag
metrics:
- type: rougeL
value: 57.2
- type: bleu
value: 42.8
library_name: transformers
---
# 🛰️ ResearchQwen 2.5-3B-LoRA
**Compact, domain-expert Q&A for systems researchers.**
Base model: [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B)
Tuning recipe: 4-bit **QLoRA** with **bitsandbytes** NF4 quantisation
Retriever: FAISS cosine-similarity store for ~33 k document chunks
---
## 🚀 Quick inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "Programmer-RD-AI/ResearchQwen2.5-3B-LoRA"
tok = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
load_in_4bit=True, # uses bitsandbytes
)
qa = pipeline("text-generation", model=model, tokenizer=tok)
print(qa("Explain how Chain Replication with Apportioned Queries improves tail-latency."))
````
### llama.cpp / GGUF
```bash
wget https://huggingface.co/Programmer-RD-AI/ResearchQwen2.5-3B-LoRA/resolve/main/model_Q4_K_M.gguf
./main -m model_Q4_K_M.gguf -p "Give the core idea of the 3FS log-structured layout in 3 sentences."
```
---
## 📚 Training data
| Source | Docs | Words |
| -------------------------- | ------ | --------- |
| 3FS white-paper | 14 | 162 k |
| CRAQ spec + benchmarks | 11 | 119 k |
| Distributed AI infra notes | 32 | 287 k |
| *Total* | **57** | **568 k** |
Synthetic Q\&A pairs were generated with an instruction template tuned for factual density; unhelpful pairs were filtered via a weak-to-strong scoring cascade (ROUGE-L > 0.4, BLEU > 0.35) ([GitHub][1]).
---
## 🛠️ Fine-tuning details
| Setting | Value |
| --------- | ---------------------------------------------------------- |
| GPU | 1× A100 40 GB |
| Precision | 4-bit NF4 w/ double-quant (bnb 0.45.4) |
| LoRA r/α | 64 / 16 |
| LR sched | cosine, 5 % warm-up |
| Steps | 1 100 |
| Epochs | 3 |
| Peak VRAM | 21 GB |
---
## 📈 Evaluation
| Metric | Base Qwen2.5-3B | **This model** |
| ------- | --------------- | -------------- |
| ROUGE-L | 45.6 | **57.2** |
| BLEU-4 | 30.4 | **42.8** |
> See `eval/` for scripts and raw scores (ROUGE, BLEU).
---
## 🔗 Integration recipe (RAG)
```python
from langchain.vectorstores import FAISS # or llama-index
from langchain.embeddings import HuggingFaceEmbeddings
emb = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
vs = FAISS.from_texts(texts, emb)
```
Retriever-generator latency: 330 ms average (GPU), 1.9 s average (CPU, gguf-int4).
---
## 💡 Why it should trend
* **Fresh domain niche** – deep systems-engineering Q\&A is underserved on HF.
* **Ultra-portable** – 4-bit LoRA + GGUF = laptop-friendly.
* **Full stack repo** – weights, notebook, RAG demo, eval scripts.
* **Eye-catching tags**`qwen2`, `lora`, `rag`, `research` map directly to popular HF filters and the trending feed ([Hugging Face][4]).
* **Clear usage code** – copy-run experience = more downloads.
---
## ⚠️ Limitations & responsible use
* Trained solely on English; non-English queries degrade sharply.
* Answers may quote or paraphrase the training docs verbatim.
* Not suitable for critical medical / legal advice.
* LoRA adapters are GPL-3.0; commercial use must comply with both GPL-3.0 and the Qwen 2.5 base license.
---
## ✍️ Citation
```bibtex
@misc{ranuga_disansa_gamage_2025,
author = { Ranuga Disansa Gamage and Rivindu Ashinsa and Thuan Naheem and Sanila Wijesekara },
title = { ResearchQwen-2.5-3B-LoRA (Revision 7ea9f5f) },
year = 2025,
url = { https://huggingface.co/Programmer-RD-AI/ResearchQwen-2.5-3B-LoRA },
doi = { 10.57967/hf/5623 },
publisher = { Hugging Face }
}
```