CondRef-AR / sample.py
PuTorch's picture
upload CondRef-AR model
6ffba01 verified
import json, torch
from CondRefAR.pipeline import CondRefARPipeline
from transformers import AutoTokenizer, T5EncoderModel
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
gpt_cfg = json.load(open("configs/gpt_config.json"))
vq_cfg = json.load(open("configs/vq_config.json"))
pipe = CondRefARPipeline.from_pretrained(".", gpt_cfg, vq_cfg, device=device, torch_dtype=dtype)
tok = AutoTokenizer.from_pretrained("google/flan-t5-xl")
enc = T5EncoderModel.from_pretrained("google/flan-t5-xl", torch_dtype=dtype).to(device).eval()
prompt = "Aaerial view of a forested area with a river running through it. On the right side of the image, there is a small town or village with a red-roofed building."
control = "assets/examples/example2.jpg"
from PIL import Image, ImageOps
control_img = Image.open(control).convert("RGB")
inputs = tok([prompt], return_tensors="pt", padding="max_length", truncation=True, max_length=120)
with torch.no_grad():
emb = enc(input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device)).last_hidden_state
imgs = pipe(emb, control_img, cfg_scale=4, temperature=1.0, top_k=2000, top_p=1.0)
imgs[0].save("sample.png")