Llama-3.3-70B-Instruct-FP8-block
Model Overview
- Model Architecture: LlamaForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of meta-llama/Llama-3.3-70B-Instruct.
Model Optimizations
This model was obtained by quantizing the weights and activations of meta-llama/Llama-3.3-70B-Instruct to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
vllm serve nm-testing/Llama-3.3-70B-Instruct-FP8-block --tensor_parallel_size 4
- Send requests to the server:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "nm-testing/Llama-3.3-70B-Instruct-FP8-block"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from transformers import AutoProcessor, LlamaForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "meta-llama/Llama-3.3-70B-Instruct"
# Load model.
model = LlamaForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLMv1 leaderboard task, using lm-evaluation-harness, on reasoning tasks using lighteval. vLLM was used for all evaluations.
Evaluation details
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Llama-3.3-70B-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Llama-3.3-70B-Instruct-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "nm-testing/Llama-3.3-70B-Instruct-FP8-block" \
--dataset "humaneval" \
--backend vllm \
--tp 4 \
--greedy
evalplus.evaluate --model "nm-testing/Llama-3.3-70B-Instruct-FP8-block" \
--dataset "mbpp" \
--backend vllm \
--tp 4 \
--greedy
Accuracy
| Category | Metric | meta-llama/Llama-3.3-70B-Instruct | nm-testing/Llama-3.3-70B-Instruct-FP8-block | Recovery (%) |
|---|---|---|---|---|
| OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 72.53 | 72.61 | 100.12 |
| GSM8K (Strict-Match, 5-shot) | 76.35 | 73.16 | 95.83 | |
| HellaSwag (Acc-Norm, 10-shot) | 86.65 | 86.56 | 99.90 | |
| MMLU (Acc, 5-shot) | 82.51 | 82.38 | 99.84 | |
| TruthfulQA (MC2, 0-shot) | 62.83 | 62.64 | 99.69 | |
| Winogrande (Acc, 5-shot) | 83.50 | 83.27 | 99.72 | |
| Average Score | 77.39 | 76.77 | 99.20 | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 92.57 | 92.57 | 100.00 |
| BBH (Acc-Norm, 3-shot) | 69.03 | 68.98 | 99.92 | |
| Math-Hard (Exact-Match, 4-shot) | 49.24 | 49.47 | 100.46 | |
| GPQA (Acc-Norm, 0-shot) | 32.63 | 32.63 | 100.00 | |
| MUSR (Acc-Norm, 0-shot) | 44.31 | 43.92 | 99.10 | |
| MMLU-Pro (Acc, 5-shot) | 53.55 | 53.56 | 100.02 | |
| Average Score | 56.89 | 56.85 | 99.93 | |
| Coding | HumanEval pass@1 | 82.90 | 82.90 | 100.00 |
| HumanEval+ pass@1 | 78.70 | 77.40 | 98.35 | |
| MBPP pass@1 | 87.70 | 87.60 | 99.89 | |
| MBPP+ pass@1 | 72.80 | 73.00 | 100.27 |
- Downloads last month
- 22
Model tree for RedHatAI/Llama-3.3-70B-Instruct-FP8-block
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct