Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8
Model Overview
- Model Architecture: Llama4ForConditionalGeneration
- Input: Text, Image
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of meta-llama/Llama-4-Scout-17B-16E-Instruct.
Model Optimizations
This model was obtained by quantizing the weights and activations of meta-llama/Llama-4-Scout-17B-16E-Instruct to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
vllm serve RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block --tensor_parallel_size 8
- Send requests to the server:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block"
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
},
{"type": "text", "text": "Describe this image."},
],
}
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from transformers import AutoProcessor, LlamaForCausalLM, AutoModelForImageTextToText
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
MODEL_ID = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
# Load model.
model = AutoModelForImageTextToText.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
ecipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=[
"re:.*lm_head",
"re:.*self_attn",
"re:.*router",
"re:.*vision_model.*",
"re:.*multi_modal_projector.*",
"Llama4TextAttention",
],
)
# Apply quantization.
oneshot(model=model, recipe=recipe
dispatch_for_generation(model)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLMv1 leaderboard task, using lm-evaluation-harness, on reasoning tasks using lighteval. vLLM was used for all evaluations.
Evaluation details
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block" \
--dataset "humaneval" \
--backend vllm \
--tp 4 \
--greedy
evalplus.evaluate --model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block" \
--dataset "mbpp" \
--backend vllm \
--tp 4 \
--greedy
Accuracy
| Category | Metric | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block | Recovery (%) |
|---|---|---|---|---|
| OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 69.62 | 68.60 | 98.53 |
| GSM8K (Strict-Match, 5-shot) | 90.52 | 90.90 | 100.42 | |
| HellaSwag (Acc-Norm, 10-shot) | 85.27 | 85.24 | 99.96 | |
| MMLU (Acc, 5-shot) | 80.49 | 80.48 | 99.99 | |
| TruthfulQA (MC2, 0-shot) | 61.28 | 61.30 | 100.03 | |
| Winogrande (Acc, 5-shot) | 77.82 | 77.35 | 99.39 | |
| Average Score | 77.50 | 77.31 | 99.75 | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 89.09 | 89.93 | 100.94 |
| BBH (Acc-Norm, 3-shot) | 65.02 | 65.11 | 100.13 | |
| Math-Hard (Exact-Match, 4-shot) | 57.93 | 57.85 | 99.87 | |
| GPQA (Acc-Norm, 0-shot) | 30.45 | 30.70 | 100.83 | |
| MUSR (Acc-Norm, 0-shot) | 42.99 | 43.39 | 100.92 | |
| MMLU-Pro (Acc, 5-shot) | 55.74 | 55.58 | 99.70 | |
| Average Score | 56.87 | 57.09 | 100.39 | |
| Coding | HumanEval pass@1 | abc | 82.30 | xyz |
| HumanEval+ pass@1 | abc | 75.60 | xyz | |
| MBPP pass@1 | abc | 80.70 | xyz | |
| MBPP+ pass@1 | abc | 64.80 | xyz |
- Downloads last month
- 10
Model tree for RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-block
Base model
meta-llama/Llama-4-Scout-17B-16E