|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- fp8 |
|
license: apache-2.0 |
|
license_link: >- |
|
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: google/gemma-3-4b-it |
|
library_name: transformers |
|
--- |
|
|
|
# gemma-3-4b-it-FP8-Dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** gemma-3-4b-it |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 2/24/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from vllm.assets.image import ImageAsset |
|
from transformers import AutoProcessor |
|
|
|
# Define model name once |
|
model_name = "RedHatAI/gemma-3-4b-it-FP8-dynamic" |
|
|
|
# Load image and processor |
|
image = ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
# Build multimodal prompt |
|
chat = [ |
|
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]}, |
|
{"role": "assistant", "content": []} |
|
] |
|
prompt = processor.apply_chat_template(chat, add_generation_prompt=True) |
|
|
|
# Initialize model |
|
llm = LLM(model=model_name, trust_remote_code=True) |
|
|
|
# Run inference |
|
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}} |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
|
|
# Display result |
|
print("RESPONSE:", outputs[0].outputs[0].text) |
|
|
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
|
# Load model. |
|
model_id = google/gemma-3-4b-it |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
model_id, device_map="auto", torch_dtype="auto" |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Recipe |
|
recipe = [ |
|
QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
sequential_targets=["Gemma3DecoderLayer"], |
|
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
), |
|
] |
|
|
|
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic" |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
recipe=recipe, |
|
trust_remote_code_model=True, |
|
output_dir=SAVE_DIR |
|
) |
|
|
|
|
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
### OpenLLM v1 |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \ |
|
--tasks openllm \ |
|
--batch_size auto |
|
``` |
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>google/gemma-3-4b-it</th> |
|
<th>RedHatAI/gemma-3-4b-it-FP8-Dynamic</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
<td>ARC Challenge</td> |
|
<td>56.57%</td> |
|
<td>57.08%</td> |
|
<td>100.90%</td> |
|
</tr> |
|
<tr> |
|
<td>GSM8K</td> |
|
<td>76.12%</td> |
|
<td>75.51%</td> |
|
<td>99.20%</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag</td> |
|
<td>74.96%</td> |
|
<td>74.92%</td> |
|
<td>99.95%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU</td> |
|
<td>58.38%</td> |
|
<td>57.98%</td> |
|
<td>99.32%</td> |
|
</tr> |
|
<tr> |
|
<td>Truthfulqa (mc2)</td> |
|
<td>51.87%</td> |
|
<td>51.62%</td> |
|
<td>99.52%</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande</td> |
|
<td>70.32%</td> |
|
<td>71.03%</td> |
|
<td>101.01%%%%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>64.70%</b></td> |
|
<td><b>64.69%</b></td> |
|
<td><b>99.98%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3"><b>Vision Evals</b></td> |
|
<td>MMMU (val)</td> |
|
<td>39.89%/td> |
|
<td>38.33%</td> |
|
<td>96.09%</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA</td> |
|
<td>50.76%</td> |
|
<td>51.60%</td> |
|
<td>101.65%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>45.33%</b></td> |
|
<td><b>44.97%</b></td> |
|
<td><b>98.87%</b></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|