nm-research's picture
Update README.md
82debe9 verified
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: google/gemma-3-4b-it
library_name: transformers
---
# gemma-3-4b-it-FP8-Dynamic
## Model Overview
- **Model Architecture:** gemma-3-4b-it
- **Input:** Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 2/24/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it).
### Model Optimizations
This model was obtained by quantizing the weights of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor
# Define model name once
model_name = "RedHatAI/gemma-3-4b-it-FP8-dynamic"
# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
# Build multimodal prompt
chat = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
{"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)
# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
# Display result
print("RESPONSE:", outputs[0].outputs[0].text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
<details>
<summary>Model Creation Code</summary>
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Load model.
model_id = google/gemma-3-4b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["Gemma3DecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
# Perform oneshot
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
```
</details>
## Evaluation
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
<details>
<summary>Evaluation Commands</summary>
### OpenLLM v1
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>google/gemma-3-4b-it</th>
<th>RedHatAI/gemma-3-4b-it-FP8-Dynamic</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC Challenge</td>
<td>56.57%</td>
<td>57.08%</td>
<td>100.90%</td>
</tr>
<tr>
<td>GSM8K</td>
<td>76.12%</td>
<td>75.51%</td>
<td>99.20%</td>
</tr>
<tr>
<td>Hellaswag</td>
<td>74.96%</td>
<td>74.92%</td>
<td>99.95%</td>
</tr>
<tr>
<td>MMLU</td>
<td>58.38%</td>
<td>57.98%</td>
<td>99.32%</td>
</tr>
<tr>
<td>Truthfulqa (mc2)</td>
<td>51.87%</td>
<td>51.62%</td>
<td>99.52%</td>
</tr>
<tr>
<td>Winogrande</td>
<td>70.32%</td>
<td>71.03%</td>
<td>101.01%%%%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>64.70%</b></td>
<td><b>64.69%</b></td>
<td><b>99.98%</b></td>
</tr>
<tr>
<td rowspan="3"><b>Vision Evals</b></td>
<td>MMMU (val)</td>
<td>39.89%/td>
<td>38.33%</td>
<td>96.09%</td>
</tr>
<tr>
<td>ChartQA</td>
<td>50.76%</td>
<td>51.60%</td>
<td>101.65%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>45.33%</b></td>
<td><b>44.97%</b></td>
<td><b>98.87%</b></td>
</tr>
</tbody>
</table>