segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of nvidia/mit-b0 on the Saad287/SIXRay_Gun dataset. It achieves the following results on the evaluation set:
- Loss: 0.0727
- Mean Iou: 0.1716
- Mean Accuracy: 0.2272
- Overall Accuracy: 0.5822
- Accuracy No-label: nan
- Accuracy Object1: 0.6917
- Accuracy Object2: 0.5239
- Accuracy Object3: 0.0778
- Accuracy Object4: 0.0696
- Accuracy Object5: 0.0
- Accuracy Object6: 0.0
- Iou No-label: 0.0
- Iou Object1: 0.5988
- Iou Object2: 0.4586
- Iou Object3: 0.0758
- Iou Object4: 0.0684
- Iou Object5: 0.0
- Iou Object6: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy No-label | Accuracy Object1 | Accuracy Object2 | Accuracy Object3 | Accuracy Object4 | Accuracy Object5 | Accuracy Object6 | Iou No-label | Iou Object1 | Iou Object2 | Iou Object3 | Iou Object4 | Iou Object5 | Iou Object6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1266 | 0.0521 | 20 | 0.1356 | 0.0943 | 0.1241 | 0.3893 | nan | 0.5262 | 0.2186 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4513 | 0.2089 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1092 | 0.1042 | 40 | 0.1287 | 0.1213 | 0.1733 | 0.4985 | nan | 0.6110 | 0.4286 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5087 | 0.3405 | 0.0 | 0.0 | 0.0 | 0.0 |
0.2208 | 0.1562 | 60 | 0.1160 | 0.1007 | 0.1384 | 0.4361 | nan | 0.5925 | 0.2378 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4796 | 0.2253 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0722 | 0.2083 | 80 | 0.1101 | 0.1112 | 0.1556 | 0.4948 | nan | 0.6781 | 0.2555 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5337 | 0.2444 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1476 | 0.2604 | 100 | 0.1162 | 0.0784 | 0.1115 | 0.3905 | nan | 0.5849 | 0.0840 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4653 | 0.0832 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1069 | 0.3125 | 120 | 0.1134 | 0.0970 | 0.1300 | 0.3504 | nan | 0.3937 | 0.3863 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3681 | 0.3108 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1365 | 0.3646 | 140 | 0.1155 | 0.1276 | 0.1826 | 0.5713 | nan | 0.7701 | 0.3256 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5870 | 0.3061 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0918 | 0.4167 | 160 | 0.1053 | 0.1279 | 0.1801 | 0.5374 | nan | 0.6877 | 0.3932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5440 | 0.3513 | 0.0 | 0.0 | 0.0 | 0.0 |
0.109 | 0.4688 | 180 | 0.1014 | 0.1200 | 0.1647 | 0.5025 | nan | 0.6596 | 0.3285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5336 | 0.3065 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0906 | 0.5208 | 200 | 0.0959 | 0.1338 | 0.1851 | 0.5505 | nan | 0.7024 | 0.4078 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5734 | 0.3628 | 0.0002 | 0.0 | 0.0 | 0.0 |
0.0735 | 0.5729 | 220 | 0.0988 | 0.1066 | 0.1552 | 0.5157 | nan | 0.7370 | 0.1944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5557 | 0.1906 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0534 | 0.625 | 240 | 0.0944 | 0.1308 | 0.1779 | 0.5155 | nan | 0.6374 | 0.4301 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5435 | 0.3721 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0646 | 0.6771 | 260 | 0.0888 | 0.1316 | 0.1782 | 0.5113 | nan | 0.6243 | 0.4451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5378 | 0.3836 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0918 | 0.7292 | 280 | 0.0915 | 0.1361 | 0.2036 | 0.5495 | nan | 0.6184 | 0.6031 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5300 | 0.4227 | 0.0002 | 0.0 | 0.0 | 0.0 |
0.0408 | 0.7812 | 300 | 0.0930 | 0.1228 | 0.1654 | 0.4673 | nan | 0.5597 | 0.4330 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4926 | 0.3672 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0592 | 0.8333 | 320 | 0.0902 | 0.1175 | 0.1864 | 0.4581 | nan | 0.4423 | 0.6763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4111 | 0.4118 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1232 | 0.8854 | 340 | 0.0865 | 0.1332 | 0.1826 | 0.5524 | nan | 0.7218 | 0.3685 | 0.0006 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.5813 | 0.3459 | 0.0006 | 0.0047 | 0.0 | 0.0 |
0.0886 | 0.9375 | 360 | 0.0832 | 0.1409 | 0.1895 | 0.5316 | nan | 0.6377 | 0.4882 | 0.0029 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.5571 | 0.4187 | 0.0029 | 0.0080 | 0.0 | 0.0 |
0.1017 | 0.9896 | 380 | 0.0834 | 0.1538 | 0.2141 | 0.6076 | nan | 0.7507 | 0.5053 | 0.0002 | 0.0286 | 0.0 | 0.0 | 0.0 | 0.6136 | 0.4339 | 0.0002 | 0.0285 | 0.0 | 0.0 |
0.0752 | 1.0417 | 400 | 0.0796 | 0.1454 | 0.1951 | 0.5326 | nan | 0.6349 | 0.4953 | 0.0056 | 0.0348 | 0.0 | 0.0 | 0.0 | 0.5505 | 0.4279 | 0.0056 | 0.0339 | 0.0 | 0.0 |
0.1932 | 1.0938 | 420 | 0.0791 | 0.1678 | 0.2318 | 0.5991 | nan | 0.6897 | 0.6074 | 0.0223 | 0.0716 | 0.0 | 0.0 | 0.0 | 0.5951 | 0.4879 | 0.0222 | 0.0698 | 0.0 | 0.0 |
0.0981 | 1.1458 | 440 | 0.0821 | 0.1434 | 0.1909 | 0.5522 | nan | 0.7081 | 0.3933 | 0.0162 | 0.0276 | 0.0 | 0.0 | 0.0 | 0.5899 | 0.3721 | 0.0160 | 0.0258 | 0.0 | 0.0 |
0.0492 | 1.1979 | 460 | 0.0778 | 0.1562 | 0.2103 | 0.5857 | nan | 0.7383 | 0.4459 | 0.0083 | 0.0693 | 0.0 | 0.0 | 0.0 | 0.6071 | 0.4113 | 0.0083 | 0.0666 | 0.0 | 0.0 |
0.0509 | 1.25 | 480 | 0.0793 | 0.1534 | 0.2028 | 0.5267 | nan | 0.6092 | 0.5256 | 0.0293 | 0.0530 | 0.0 | 0.0 | 0.0 | 0.5463 | 0.4500 | 0.0289 | 0.0483 | 0.0 | 0.0 |
0.0687 | 1.3021 | 500 | 0.0784 | 0.1848 | 0.2528 | 0.6293 | nan | 0.7450 | 0.5812 | 0.0154 | 0.1753 | 0.0 | 0.0 | 0.0 | 0.6296 | 0.4799 | 0.0154 | 0.1688 | 0.0 | 0.0 |
0.0731 | 1.3542 | 520 | 0.0785 | 0.1379 | 0.1795 | 0.5113 | nan | 0.6292 | 0.4299 | 0.0118 | 0.0060 | 0.0 | 0.0 | 0.0 | 0.5519 | 0.3956 | 0.0118 | 0.0060 | 0.0 | 0.0 |
0.037 | 1.4062 | 540 | 0.0767 | 0.1712 | 0.2348 | 0.6052 | nan | 0.6978 | 0.6093 | 0.0298 | 0.0718 | 0.0 | 0.0 | 0.0 | 0.6092 | 0.4886 | 0.0297 | 0.0709 | 0.0 | 0.0 |
0.0656 | 1.4583 | 560 | 0.0765 | 0.1693 | 0.2280 | 0.5944 | nan | 0.6972 | 0.5661 | 0.0505 | 0.0546 | 0.0 | 0.0 | 0.0 | 0.6022 | 0.4787 | 0.0502 | 0.0543 | 0.0 | 0.0 |
0.1244 | 1.5104 | 580 | 0.0750 | 0.1580 | 0.2096 | 0.5554 | nan | 0.6455 | 0.5464 | 0.0458 | 0.0200 | 0.0 | 0.0 | 0.0 | 0.5717 | 0.4693 | 0.0451 | 0.0198 | 0.0 | 0.0 |
0.0528 | 1.5625 | 600 | 0.0748 | 0.1827 | 0.2448 | 0.6157 | nan | 0.7343 | 0.5472 | 0.0655 | 0.1219 | 0.0 | 0.0 | 0.0 | 0.6238 | 0.4736 | 0.0642 | 0.1169 | 0.0 | 0.0 |
0.0818 | 1.6146 | 620 | 0.0733 | 0.1749 | 0.2370 | 0.5908 | nan | 0.6649 | 0.6280 | 0.0422 | 0.0868 | 0.0 | 0.0 | 0.0 | 0.5926 | 0.5054 | 0.0419 | 0.0846 | 0.0 | 0.0 |
0.0272 | 1.6667 | 640 | 0.0728 | 0.1772 | 0.2375 | 0.6001 | nan | 0.7048 | 0.5615 | 0.0640 | 0.0946 | 0.0 | 0.0 | 0.0 | 0.6094 | 0.4767 | 0.0630 | 0.0913 | 0.0 | 0.0 |
0.0358 | 1.7188 | 660 | 0.0734 | 0.1704 | 0.2254 | 0.5721 | nan | 0.6660 | 0.5484 | 0.0747 | 0.0634 | 0.0 | 0.0 | 0.0 | 0.5852 | 0.4709 | 0.0736 | 0.0628 | 0.0 | 0.0 |
0.0808 | 1.7708 | 680 | 0.0723 | 0.1761 | 0.2321 | 0.5862 | nan | 0.7035 | 0.5020 | 0.1054 | 0.0815 | 0.0 | 0.0 | 0.0 | 0.6020 | 0.4478 | 0.1022 | 0.0805 | 0.0 | 0.0 |
0.0663 | 1.8229 | 700 | 0.0721 | 0.1784 | 0.2361 | 0.5952 | nan | 0.7086 | 0.5257 | 0.0974 | 0.0852 | 0.0 | 0.0 | 0.0 | 0.6091 | 0.4612 | 0.0946 | 0.0839 | 0.0 | 0.0 |
0.0521 | 1.875 | 720 | 0.0720 | 0.1798 | 0.2392 | 0.5963 | nan | 0.6937 | 0.5680 | 0.0861 | 0.0877 | 0.0 | 0.0 | 0.0 | 0.6054 | 0.4824 | 0.0845 | 0.0864 | 0.0 | 0.0 |
0.0557 | 1.9271 | 740 | 0.0725 | 0.1758 | 0.2341 | 0.5959 | nan | 0.7035 | 0.5469 | 0.0758 | 0.0784 | 0.0 | 0.0 | 0.0 | 0.6081 | 0.4711 | 0.0744 | 0.0772 | 0.0 | 0.0 |
0.048 | 1.9792 | 760 | 0.0727 | 0.1716 | 0.2272 | 0.5822 | nan | 0.6917 | 0.5239 | 0.0778 | 0.0696 | 0.0 | 0.0 | 0.0 | 0.5988 | 0.4586 | 0.0758 | 0.0684 | 0.0 | 0.0 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Saad287/segformer-b0-finetuned-segments-sidewalk-oct-22
Base model
nvidia/mit-b0