T5 Product Category & Subcategory Classifier

This model is fine-tuned on T5-base for product category and subcategory classification.

Model Description

  • Model Type: T5 (Text-to-Text Transfer Transformer)
  • Language: English
  • Task: Product Classification
  • Training Data: 10,172 categorized products
  • Input Format: "Predict the product category and subcategory in the following format: 'Category: | Subcategory: '. Product: {product_name}"
  • Output Format: "Category: {category} | Subcategory: {subcategory}"

Usage

from transformers import T5ForConditionalGeneration, T5Tokenizer

model = T5ForConditionalGeneration.from_pretrained("{repo_id}")
tokenizer = T5Tokenizer.from_pretrained("{repo_id}")

def predict(text):
    prompt = f"Predict the product category and subcategory in the following format: 'Category: <CATEGORY> | Subcategory: <SUBCATEGORY>'. Product: {text}"
    inputs = tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True)
    
    outputs = model.generate(**inputs, max_length=32, num_beams=4)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Example
result = predict("Pantene Suave & Liso Shampoo")
print(result)

Training Details

  • Base Model: t5-base
  • Training Type: Fine-tuning
  • Epochs: 5
  • Batch Size: 8
  • Learning Rate: 3e-5
  • Weight Decay: 0.01

Limitations

  • The model works best with product names in English
  • Performance may vary for products outside the training categories
  • Requires clear and specific product descriptions
Downloads last month
1,380
Safetensors
Model size
223M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support