SharpAI's picture
Upload README.md with huggingface_hub
a2e7fe7 verified
---
title: YOLO Model
tags:
- yolo
- object-detection
- computer-vision
- unknown
- aegis-ai
library_name: ultralytics
license: agpl-3.0
---
# YOLO Model
This model has been converted and optimized using the **Aegis AI Model Conversion Tool**.
## Model Details
- **Original Model**: Unknown
- **Format**: UNKNOWN
- **Task**: Object Detection
- **Framework**: Ultralytics YOLO
- **License**: AGPL-3.0
## Performance Metrics
| Metric | Value |
|--------|--------|
| Average FPS | N/A |
| Inference Time | N/A ms |
| Memory Usage | N/A MB |
| Target Hardware | cpu |
## Hardware Information
- **Platform**: Unknown
- **Device**: cpu
- **Optimization**: Hardware-specific optimizations applied
## Usage
### Loading the Model
```python
# For ONNX models
import onnxruntime as ort
session = ort.InferenceSession("model.onnx")
# For PyTorch models
from ultralytics import YOLO
model = YOLO("model.pt")
# For TensorRT models (NVIDIA GPU)
# Requires TensorRT runtime
model = YOLO("model.engine")
```
### Inference
```python
import numpy as np
from PIL import Image
# Load your image
image = Image.open("path/to/image.jpg")
# Run inference
results = model(image)
# Process results
for result in results:
boxes = result.boxes # Bounding boxes
classes = result.names # Class names
```
## Conversion Details
This model was converted using the Aegis AI Model Conversion Tool with the following configuration:
- **Precision**: fp32
- **Optimization Level**: standard
- **Hardware Target**: cpu
- **Conversion Date**: 2025-08-18 15:10:46
## Model Architecture
Based on the YOLO (You Only Look Once) architecture, this model provides real-time object detection capabilities with optimized performance for the target hardware.
### Input
- **Shape**: 640x640
- **Format**: RGB images
- **Normalization**: [0-1] range
### Output
- **Bounding Boxes**: Object locations
- **Confidence Scores**: Detection confidence
- **Class Predictions**: Object categories
## Benchmarking
The model has been benchmarked on the target hardware with the following results:
```json
{}
```
## Hardware Compatibility
This model has been optimized for:
- **Primary**: cpu
- **Platform**: Unknown
For other hardware configurations, consider using the Aegis AI Model Conversion Tool to create optimized versions.
## Citation
If you use this model in your research or project, please cite:
```bibtex
@misc{aegis-ai-converted-model,
title={Aegis AI Converted YOLO Model},
author={Aegis AI Team},
year={2025},
howpublished={\url{https://github.com/aegis-ai/model-conversion-tool}}
}
```
## Related Models
- [Original YOLO Models](https://github.com/ultralytics/ultralytics)
- [Aegis AI Model Zoo](https://huggingface.co/aegis-ai)
## Support
For issues with this converted model or the conversion tool:
- [GitHub Issues](https://github.com/aegis-ai/model-conversion-tool/issues)
- [Aegis AI Documentation](https://docs.aegis-ai.com)
---
*This model was automatically converted and uploaded by the Aegis AI Model Conversion Tool.*