Thai Sentiment Analysis - PhayaThaiBERT
Fine-tuned PhayaThaiBERT for Thai sentiment classification.
Model Details
- Base Model: PhayaThaiBERT (110M parameters)
- Task: 3-class sentiment (positive/neutral/negative)
- Dataset: Wisesight Sentiment (21k training samples)
- Performance: 82% accuracy, 0.81 weighted F1
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained("yourusername/thai-sentiment-phayabert")
tokenizer = AutoTokenizer.from_pretrained("yourusername/thai-sentiment-phayabert")
text = "อาหารอร่อยมาก"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1).item()
labels = {0: "positive", 1: "neutral", 2: "negative"}
print(labels[prediction]) # positive
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train SiemonCha/thai-sentiment-phayabert
Space using SiemonCha/thai-sentiment-phayabert 1
Evaluation results
- accuracy on wisesight_sentimentself-reported0.820
- f1 on wisesight_sentimentself-reported0.810