|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- OpenGVLab/InternVL2_5-2B |
|
pipeline_tag: image-text-to-text |
|
|
|
--- |
|
|
|
# SkyworkVL-2B: Multimodal Understanding with Bag of Tricks |
|
|
|
--- |
|
|
|
## Introduction |
|
|
|
**SkyworkVL-2B** is an advanced VLM model trained on 2 million high-quality caption and QA samples. Leveraging innovative techniques across multiple training stages, our model delivers superior performance on a range of vision-language tasks. |
|
|
|
## 🔑 Key Features |
|
|
|
### 1. Multi-Resolution Processing |
|
|
|
- Images are processed at multiple resolutions. For each resolution (from high to low), we apply Closest Aspect Ratio Matching to partition the image into tiles. Finally, the original image is resized into a tile and appended to the final representation—ensuring comprehensive image understanding. |
|
|
|
### 2. Multi-Stage Supervised Fine-Tuning (SFT) |
|
|
|
- **Stage 1:** Fine-tuning on the full dataset. |
|
- **Stage 2:** Refinement using a curated subset of 200K high-scoring samples filtered by GPT-4 evaluations. |
|
|
|
### 3. High-Quality Chain-of-Thought (CoT) Fine-Tuning |
|
|
|
- Fine-tuning on 40K high-quality CoT data including self-collected multimodal Chinese Gaokao data with detailed analysis to boost the model’s reasoning capability. |
|
|
|
|
|
## Model Introduction |
|
|
|
| Model Name | Base Model | Parameters | Download Link | |
|
| ----------------------- | ------------------------- | ---------- | ----------------------------------------------------------- | |
|
| SkyworkVL-2B | [OpenGVLab/InternVL2_5-2B](https://huggingface.co/OpenGVLab/InternVL2_5-2B) | 2B | 🤗 [Download](https://huggingface.co/Skywork/SkyworkVL-2B) | |
|
| SkyworkVL-38B | [OpenGVLab/InternVL2_5-38B](https://huggingface.co/OpenGVLab/InternVL2_5-38B) | 38B | 🤗 [Download](https://huggingface.co/Skywork/SkyworkVL-38B) | |
|
|
|
## Performance |
|
|
|
| Metric | MathVista (testmini) | MMMU (val) | AI2D | OCRBench | MME | **RealWorldQA** | **HallusionBench** | |
|
| --------------------------- | -------------------- | --------------- | --------------- | ------------- | -------------- | --------------- | ------------------ | |
|
| Qwen2-VL-2B | 47.8 | 42.2 |74.7|797|1899.1|60.7| 42.4 | |
|
| Internvl2.5-2B | 51.3 | 43.6 | 74.9|804|**2138.2** | 60.1| 42.6 | |
|
| SkyworkVL-2B |**62.8** | **44.1**| **76.7**|**817** | 1937 | **64.8** |**44.3** | |
|
|
|
*The performance improvements above demonstrate notable gains in multi-disciplinary question answering, object detection (BBox), and scientific chart analysis among other benchmarks.* |
|
|
|
## Usage |
|
|
|
We provide an example code to run `SkyworkVL-2B` using `transformers` |
|
|
|
### Model Loading |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
path = "Skywork/SkyworkVL-2B" |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True).eval().cuda() |
|
``` |
|
|
|
|
|
### Inference with Transformers |
|
|
|
```python |
|
import math |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
def split_model(model_name): |
|
device_map = {} |
|
world_size = torch.cuda.device_count() |
|
num_layers = { |
|
'SkyworkVL-2B': 24, 'SkyworkVL-38B': 64}[model_name] |
|
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) |
|
num_layers_per_gpu = [num_layers_per_gpu] * world_size |
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) |
|
layer_cnt = 0 |
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
for j in range(num_layer): |
|
device_map[f'language_model.model.layers.{layer_cnt}'] = i |
|
layer_cnt += 1 |
|
device_map['vision_model'] = 0 |
|
device_map['mlp1'] = 0 |
|
device_map['language_model.model.tok_embeddings'] = 0 |
|
device_map['language_model.model.embed_tokens'] = 0 |
|
device_map['language_model.output'] = 0 |
|
device_map['language_model.model.norm'] = 0 |
|
device_map['language_model.model.rotary_emb'] = 0 |
|
device_map['language_model.lm_head'] = 0 |
|
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 |
|
|
|
return device_map |
|
|
|
path = 'Skywork/SkyworkVL-2B' |
|
device_map = split_model('SkyworkVL-2B') |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
load_in_8bit=True, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True, |
|
device_map=device_map).eval() |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
|
|
# set the max number of tiles in `max_num` |
|
pixel_values = load_image('./demo/image1.jpg', max_num=12).to(torch.bfloat16).cuda() |
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
|
|
# pure-text conversation (纯文本对话) |
|
question = 'Hi, what can you do?' |
|
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
question = 'Can you explain quantum mechanics to me?' |
|
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
# image-text conversation (单张图片单轮对话) |
|
question = '<image>\nWhat do you see in this image?' |
|
response = model.chat(tokenizer, pixel_values, question, generation_config) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
``` |
|
|
|
## Citation |
|
|
|
```BibTeX |
|
@misc{SkyworkVL, |
|
author = {Jiangbo Pei and Peiyu Wang and Yichen Wei and Xiaokun Wang and Yi Peng and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou}, |
|
title = {SkyworkVL: Multimodal Understanding with Bag of Tricks}, |
|
year = {2025}, |
|
publisher = {Huggingface}, |
|
journal = {Huggingface repository}, |
|
howpublished = {\url{https://huggingface.co/Skywork/SkyworkVL-2B}} |
|
} |
|
``` |