Add pipeline tag and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,22 +1,19 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
license: mit
|
4 |
base_model:
|
5 |
- Qwen/Qwen3-8B
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
# Model Card for SubconsciousDev/TIM-8b-preview
|
9 |
|
10 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
-
|
12 |
TIM is a model that reasons on recursive task trees formatted as JSON structures.
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
17 |
|
18 |
-
<!-- Provide a longer summary of what this model is. -->
|
19 |
-
|
20 |
- **Developed by:** MIT and Subconscious
|
21 |
- **Model type:** Structural reasoning model
|
22 |
- **License:** MIT License
|
@@ -24,9 +21,34 @@ TIM is a model that reasons on recursive task trees formatted as JSON structures
|
|
24 |
|
25 |
### Model Sources
|
26 |
|
27 |
-
<!-- Provide the basic links for the model. -->
|
28 |
-
|
29 |
- **Repository:** [TIMRUN](https://github.com/subconscious-systems/TIMRUN)
|
30 |
- **Paper:** [Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning](https://arxiv.org/pdf/2507.16784)
|
31 |
- **Demo:** [Subconscious API platform](https://www.subconscious.dev/)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model:
|
3 |
- Qwen/Qwen3-8B
|
4 |
+
library_name: transformers
|
5 |
+
license: mit
|
6 |
+
pipeline_tag: text-generation
|
7 |
---
|
8 |
|
9 |
# Model Card for SubconsciousDev/TIM-8b-preview
|
10 |
|
|
|
|
|
11 |
TIM is a model that reasons on recursive task trees formatted as JSON structures.
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
### Model Description
|
16 |
|
|
|
|
|
17 |
- **Developed by:** MIT and Subconscious
|
18 |
- **Model type:** Structural reasoning model
|
19 |
- **License:** MIT License
|
|
|
21 |
|
22 |
### Model Sources
|
23 |
|
|
|
|
|
24 |
- **Repository:** [TIMRUN](https://github.com/subconscious-systems/TIMRUN)
|
25 |
- **Paper:** [Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning](https://arxiv.org/pdf/2507.16784)
|
26 |
- **Demo:** [Subconscious API platform](https://www.subconscious.dev/)
|
27 |
|
28 |
+
## Sample Usage
|
29 |
+
|
30 |
+
You can use this model with the `transformers` library, leveraging `trust_remote_code=True`.
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
import torch
|
35 |
+
|
36 |
+
# Load the model and tokenizer
|
37 |
+
model_name = "SubconsciousDev/TIM-8b-preview"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_name,
|
41 |
+
torch_dtype=torch.bfloat16, # Use torch.float16 for GPUs that don't support bfloat16
|
42 |
+
device_map="auto",
|
43 |
+
trust_remote_code=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Example: Simple text generation
|
47 |
+
prompt_text = "What is the capital of France?"
|
48 |
+
input_ids = tokenizer(prompt_text, return_tensors="pt").input_ids.to(model.device)
|
49 |
+
|
50 |
+
output_ids = model.generate(input_ids, max_new_tokens=50, do_sample=True, temperature=0.7)
|
51 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
52 |
+
|
53 |
+
print(response)
|
54 |
+
```
|