Add pipeline tag and sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +30 -8
README.md CHANGED
@@ -1,22 +1,19 @@
1
  ---
2
- library_name: transformers
3
- license: mit
4
  base_model:
5
  - Qwen/Qwen3-8B
 
 
 
6
  ---
7
 
8
  # Model Card for SubconsciousDev/TIM-8b-preview
9
 
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
  TIM is a model that reasons on recursive task trees formatted as JSON structures.
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
  - **Developed by:** MIT and Subconscious
21
  - **Model type:** Structural reasoning model
22
  - **License:** MIT License
@@ -24,9 +21,34 @@ TIM is a model that reasons on recursive task trees formatted as JSON structures
24
 
25
  ### Model Sources
26
 
27
- <!-- Provide the basic links for the model. -->
28
-
29
  - **Repository:** [TIMRUN](https://github.com/subconscious-systems/TIMRUN)
30
  - **Paper:** [Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning](https://arxiv.org/pdf/2507.16784)
31
  - **Demo:** [Subconscious API platform](https://www.subconscious.dev/)
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
2
  base_model:
3
  - Qwen/Qwen3-8B
4
+ library_name: transformers
5
+ license: mit
6
+ pipeline_tag: text-generation
7
  ---
8
 
9
  # Model Card for SubconsciousDev/TIM-8b-preview
10
 
 
 
11
  TIM is a model that reasons on recursive task trees formatted as JSON structures.
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
 
 
17
  - **Developed by:** MIT and Subconscious
18
  - **Model type:** Structural reasoning model
19
  - **License:** MIT License
 
21
 
22
  ### Model Sources
23
 
 
 
24
  - **Repository:** [TIMRUN](https://github.com/subconscious-systems/TIMRUN)
25
  - **Paper:** [Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning](https://arxiv.org/pdf/2507.16784)
26
  - **Demo:** [Subconscious API platform](https://www.subconscious.dev/)
27
 
28
+ ## Sample Usage
29
+
30
+ You can use this model with the `transformers` library, leveraging `trust_remote_code=True`.
31
+
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+ import torch
35
+
36
+ # Load the model and tokenizer
37
+ model_name = "SubconsciousDev/TIM-8b-preview"
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ model_name,
41
+ torch_dtype=torch.bfloat16, # Use torch.float16 for GPUs that don't support bfloat16
42
+ device_map="auto",
43
+ trust_remote_code=True
44
+ )
45
+
46
+ # Example: Simple text generation
47
+ prompt_text = "What is the capital of France?"
48
+ input_ids = tokenizer(prompt_text, return_tensors="pt").input_ids.to(model.device)
49
+
50
+ output_ids = model.generate(input_ids, max_new_tokens=50, do_sample=True, temperature=0.7)
51
+ response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
52
+
53
+ print(response)
54
+ ```