distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5886
- Accuracy: 0.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.944 | 1.0 | 113 | 1.8671 | 0.42 |
1.1243 | 2.0 | 226 | 1.2841 | 0.64 |
1.0414 | 3.0 | 339 | 1.0101 | 0.7 |
0.666 | 4.0 | 452 | 0.8930 | 0.73 |
0.5836 | 5.0 | 565 | 0.7213 | 0.8 |
0.4196 | 6.0 | 678 | 0.5766 | 0.84 |
0.2814 | 7.0 | 791 | 0.6198 | 0.82 |
0.1306 | 8.0 | 904 | 0.5782 | 0.84 |
0.1602 | 9.0 | 1017 | 0.5682 | 0.84 |
0.0963 | 10.0 | 1130 | 0.5886 | 0.83 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for SverreNystad/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert